Concepciones alternativas sobre el concepto de pendiente en estudiantes de nivel medio superior de una zona rural
DOI:
https://doi.org/10.33010/ie_rie_rediech.v15i0.1942Palavras-chave:
Concepciones alternativas, pendiente, entrevista basadas en tareas, zona ruralResumo
Este artículo reporta los resultados de una investigación cuyo objetivo fue identificar las concepciones alternativas sobre el concepto de pendiente en estudiantes de nivel medio superior pertenecientes a una zona rural. Se empleó una entrevista basada en tareas para la recolección de datos de 28 estudiantes de 12° grado y el método de análisis temático para su respectivo análisis. Las concepciones alternativas identificadas fueron la pendiente como: la longitud de un segmento de recta, un objeto, una ecuación lineal o algún elemento de esta, el valor del ángulo de inclinación de una recta, un concepto propio o característico de las rectas, la distancia del eje x a un punto de esta, la pendiente de una recta gráficamente representa un punto en el plano cartesiano, y el signo de la pendiente queda determinado por el signo del semi eje x donde se ubica la gráfica. Estos resultados nos invitan a reflexionar sobre futuras investigaciones para promover una mejora en el aprendizaje de la pendiente.
Referências
Abouchedid, K., y Nasser, R. (2000). The role of presentation and response format in understanding, preconceptions and alternative concepts in algebra problems. United States Department of Education. https://files.eric.ed.gov/ fulltext/ED438174.pdf
Abreu, R., Dolores, C., Sánchez, J. L., y Sigarreta, J. M. (2020). El concepto de pendiente: estado de la investigación y prospectivas. Números, 103, 81-98. http://ri.uagro.mx/bitstream/handle/uagro/1960/ART_6385_20.pdf
Agudelo-Valderrama, C., y Martínez, D. (2016). In pursuit of a connected way of knowing: The case of one mathematics teacher. International Journal of Science and Mathematics Education, 14(4), 719-737. https://www.researchgate.net/publication/270511027_In_Pursuit_of_a_Connected_Way_of_Knowing_The_Case_of_One_Mathematics_Teacher
An, S., y Wu, Z. (2012). Enhancing mathematics teachers’ knowledge of students’ thinking from assessing and analyzing misconceptions in homework. International Journal of Science and Mathematics Education, 10, 717-753. https://link.springer.com/article/10.1007/s10763-011-9324-x
Billings, E., y Klanderman, D. (2000). Graphical representations of speed: Obstacles preservice K-8 teachers experience. School Science and Mathematics, 100(8), 440-450. https://doi.org/10.1111/j.1949-8594.2000.tb17332.x
Birgin, O. (2012). Investigation of eighth-grade students’ understanding of the slope of the linear function. Bolema: Boletim de Educação Matemática, 26(42a), 139-162. https://doi.org/10.1590/S0103-636X2012000100008
Blanco, B., y Blanco, L. J. (2009). Contextos y estrategias en la resolución de problemas de primaria. Números, 71, 75-85. https://funes.uniandes.edu.co/funes-documentos/contextos-y-estrategias-en-la-resolucion-de-problemas-de-primaria/
Bostan, A. (2016). Conceptual level of understanding about sound concept: Sample of fifth grade students. e-International Journal of Educational Research, 7(1), 87-97. https://files.eric.ed.gov/fulltext/ED565788.pdf
Braun, V., y Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. http://dx.doi.org/10.1191/1478088706qp063oa
Braun, V., y Clarke, V. (2012). Thematic analysis. En H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf y K. J. Sher (eds.), APA handbook of research methods in psychology, vol. 2. Research designs: Quantitative, qualitative, neuropsychological, and biological (pp. 57-71). American Psychological Association. https://doi.org/10.1037/13620-004
Byerley, C., y Thompson, P. (2017). Secondary mathematics teachers’ meanings for measure, slope, and rate of change. The Journal of Mathematical Behavior, 48(1), 168-193. https://doi.org/10.1016/j.jmathb.2017.09.003
Carlson, M., Jacobs, S., Coe, E., Larsen, S., y Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958
Chhabra, M., y Baveja, B. (2012). Exploring minds: Alternative conceptions in science. Procedia - Social and Behavioral Sciences, 55, 1069-1078. https://doi.org/10.1016/j.sbspro.2012.09.599
Chi, M. T. H., Roscoe, R. D., Slotta, J. D., Roy, M., y Chase, C. C. (2012). Misconceived causal explanations for emergent processes. Cognitive Science, 36(1), 1-61. https://doi.org/10.1111/j.1551-6709.2011.01207.x
Cho, P., y Nagle, C. (2017). Procedural and conceptual difficulties with slope: An analysis of students’ mistakes on routine tasks. International Journal of Research in Education and Science, 3(1), 135-150. https://files.eric.ed.gov/fulltext/EJ1126738.pdf
Choy, B., Lee, M., y Mizzi, A. (2015). Textbook signatures: An exploratory study of the notion of gradient in Germany, Singapore and South Korea. En K. Beswick, T. Muir y J. Wells (eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (pp. 161-168). PME. https://www.researchgate.net/publication/280301687_TEXTBOOK_SIGNATURES_AN_EXPLORATORY_STUDY_OF_THE_NOTION_OF_GRADIENT_IN_GERMANY_SINGAPORE_AND_SOUTH_KOREA
Clarkson, P. C. (2004). Teaching mathematics in multilingual classrooms: The global importance of contexts. En I. P. Cheong, H. S. Dhindsa, I. J. Kyeleve y O. Chukwu (eds.), Globalisation trends in science, mathematics and technical education (pp. 9-23). Universiti Brunei Darussalam. https://acuresearchbank.acu.edu.au/item/89v82/teaching-mathematics-in-multilingual-classrooms-the-global-importance-of-contexts
Coe, E. E. (2007). Modeling teachers’ ways of thinking about rate of change [Tesis de Doctorado no publicada]. Arizona State University. http://pat-thompson.net/PDFversions/Theses/2007Ted.pdf
Confrey, J. (1990). A review of research on students conceptions in mathematics, science and programming. En C. E. Cazden (ed.), Review of research in education (pp. 3-56). American Educational Research Association. https://doi.org/10.2307/1167350
Denbel, D. G. (2014). Students’ misconceptions of the limit concept in a first Calculus course. Journal of Education and Practice, 5(34), 24-40. https://core.ac.uk/download/pdf/234636567.pdf
Dolores-Flores, C., e Ibáñez-Flores, G. (2020). Conceptualizaciones de la pendiente en libros de texto de matemáticas. Bolema: Boletim de Educação Matemática, 34(67), 825-846. https://doi.org/10.1590/1980-4415v34n67a22
Dolores, C. (2004). Acerca del análisis de funciones a través de sus gráficas: concepciones alternativas en estudiantes de bachillerato. Revista Latinoamericana de Investigación en Matemática Educativa, 7(3), 195-218. https://www.redalyc.org/pdf/335/33570301.pdf
Dolores, C., Alarcón, G., y Albarrán, D. (2002). Concepciones alternativas sobre las gráficas cartesianas del movimiento: el caso de la velocidad y la trayectoria. Revista Latinoamericana de Investigación en Matemática Educativa, 5(3), 225-250. https://n9.cl/ha4qw
Dolores, C., Rivera, M. I., y Moore-Russo, D. (2020). Conceptualizations of slope in Mexican intended curriculum. School Science and Mathematics, 120(2), 104-115. https://doi.org/10.1111/ssm.12389
Dolores-Flores, C., Rivera-López, M. I., y García-García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, 50(3), 369-389. https://doi.org/10.1080/0020739X.2018.1507050
Fujii, T. (2020). Misconception and alternative conceptions in mathematics education. En S. Lerman (ed.), Encyclopedia of Mathematics Education (pp. 625-627). Springer. https://doi.org/10.1007/978-3-030-15789-0_114
García-García, J. (2014). El contexto cultural y la resolución de problemas: vistos desde el salón de clases de una comunidad Ñuu Savi. Revista Latinoamericana de Etnomatemática: Perspectivas Socioculturales de la Educación Matemática, 7(1), 50-73. https://www.redalyc.org/articulo.oa?id=274030901003
García, J. (2018). Conexiones matemáticas y concepciones alternativas asociadas a la derivada y a la integral en estudiantes del preuniversitario [Tesis de Doctorado inédita]. Universidad Autónoma de Guerrero. https://www.researchgate.net/profile/Javier_Garcia-Garcia4
Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. En A. E. Kelly y R. A. Lesh (eds.), Handbook of research design in mathematics and science education (pp. 517-545). Lawrence Erlbaum Associates. https://www.researchgate.net/profile/Gerald-Goldin/publication/313744920_A_scientific_perspective_on_structured_task-based_interviews_in_mathematics_education_research/links/5beb10d64585150b2bb4d8cd/A-scientific-perspective-on-structured-task-based-interviews-in-mathematics-education-research.pdf
Juárez, D., y Rodríguez, C. R. (2016). Factores que afectan a la equidad educativa en escuelas rurales de México. Revista de Investigación Educacional Latinoamericana, 53(2), 1-15. https://doi.org/10.7764/PEL.53.2.2016.8
Kaplan, A., Ozturk, M., y Ocal, M. F. (2015). Relieving of misconceptions of derivative concept with derive. International Journal of Research in Education and Science, 1(1), 64-74. https://files.eric.ed.gov/fulltext/ED564414.pdf
Kastberg, S. E. (2002). Understanding mathematical concepts: the case of the logarithmic function [Tesis de Doctorado no publicada]. University of Georgia. https://jwilson.coe.uga.edu/Pers/Dissertations/kastberg_signe_e_200205_phd.pdf
Lehmann, C. H. (1980). Geometría analítica. Limusa. https://www.cimat.mx/ciencia_para_jovenes/bachillerato/libros/[Lehmann]GeometriaAnalitica.pdf
Lobato, J., y Thanheiser, E. (2002). Developing understanding of ratio as measure as a foundation for slope. En B. Litwiller y G. Bright (eds.), Making sense of fractions, ratios, and proportions: 2002 yearbook (pp. 162-175). National Council of Teachers of Mathematics. https://www.researchgate.net/publication/264860927_Developing_understanding_of_ratio_as_measure_as_a_foundation_for_slope
López, G., y Tinajero, G. (2011). Los maestros indígenas ante la diversidad étnica y lingüística en contextos de migración. Cuadernos de Comillas, 1, 5-21. https://aulaintercultural.org/2011/07/17/los-maestros-indigenas-ante-la-diversidad-etnica-y-linguistica-en-contextos-de-migracion/
López, L., Beltrán, A., y Pérez, M. A. (2014). Deserción escolar en universitarios del centro universitario UAEM Temascaltepec, México: estudio de caso de la licenciatura de Psicología. Revista Iberoamericana de Evaluación Educativa, 7(1), 91-104. https://revistas.uam.es/riee/article/view/3390
Lucariello, J., Tine, M. T., y Ganley, C. M. (2014). A formative assessment of students’ algebraic variable misconceptions. Journal of Mathematical Behavior, 33, 30-41. https://doi.org/10.1016/j.jmathb.2013.09.001
Mahmud, M., y Gutiérrez, O. (2010). Estrategia de enseñanza basada en el cambio conceptual para la transformación de ideas previas en el aprendizaje de las ciencias. Formación Universitaria, 3(1), 11-20. https://www.scielo.cl/pdf/formuniv/v3n1/art03.pdf
Mevarech, Z., y Kramarsky, B. (1997). From verbal description to graphic representation: Stability and change in students' alternative conceptions. Educational Studies in Mathematics, 32(3), 229-263. https://doi.org/10.1023/A:1002965907987
Moore-Russo, D., Conner, A., y Rugg, K. (2011). Can slope be negative in 3-space? Studying concept image of slope through collective definition construction. Educational Studies in Mathematics, 76(1), 3-21. https://link.springer.com/article/10.1007/s10649-010-9277-y
Nagle, C., y Moore-Russo, D. (2013). The concept of slope: Comparing teachers’ concept images and instructional content. Investigations in Mathematics Learning, 6(2), 1-18. https://www.researchgate.net/publication/261348486_The_Concept_of_Slope_Comparing_Teachers'_Concept_Images_and_Instructional_Content
Nagle, C., y Moore-Russo, D. (2014). Slope across the curriculum: Principles and standards for school mathematics and common core state standards. The Mathematics Educator, 23(2), 40-59. https://files.eric.ed.gov/fulltext/EJ1027058.pdf
Narjaikaewa, P. (2013). Alternative conceptions of primary school teachers of science about force and motion. Procedia - Social and Behavioral Sciences, 88(2), 250-257. https://www.researchgate.net/publication/275542437_Alternative_Conceptions_of_Primary_School_Teachers_of_Science_about_Force_and_Motion
Osborne, R. J., y Wittrock, M. C. (1983). Learning science: A generative process. Science Education, 67(4), 498-508. https://doi.org/10.1002/sce.3730670406
Planea [Plan Nacional para la Evaluación de los Aprendizajes] (2018). Resultados nacionales de logro en EMS. Lenguaje y comunicación, matemáticas. Instituto Nacional para la Evaluación de la Educación.
Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A., e Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10(6), 1393-1414. https://doi.org/10.1007/s10763-012-9344-1
Rivera, M. I., y Dolores, C. (2021). Preconcepciones de pendiente en estudiantes de educación secundaria. Enseñanza de las Ciencias, 39(1), 195-217. https://doi.org/10.5565/rev/ensciencias.3045
Rivera, M. I., Salgado, G., y Dolores, C. (2019). Explorando las conceptualizaciones de la pendiente en estudiantes universitarios. Bolema, 33(65), 1027-1046. http://dx.doi.org/10.1590/1980-4415v33n65a03
Salgado, G. (2020). Conceptualizaciones de pendiente que poseen los profesores del bachillerato y las que enseñan a sus estudiantes [Tesis de Doctorado inédita]. Universidad Autónoma de Guerrero. http://ri.uagro.mx/bitstream/handle/uagro/3834/TD_5142653_20.pdf
Salgado, G., Rivera, M. I., y Dolores, C. (2020). Conceptualizaciones de pendiente: contenido que enseñan los profesores del bachillerato. Unión - Revista Iberoamericana de Educación Matemática, 15(57), 41-56. https://n9.cl/uil5j1
Schmelkes, S. (2014). El derecho a la educación. En El derecho a una educación de calidad. Informe 2014. Instituto Nacional de Evaluación Educativa. https://www.inee.edu.mx/wp-content/uploads/2018/12/P1D239-1.pdf
Serhan, D. (2015). Students’ understanding of the definite integral concept. International Journal of Research in Education and Science, 1(1), 84-88. https://files.eric.ed.gov/fulltext/EJ1105099.pdf
Stanton, M., y Moore-Russo, D. (2012). Conceptualizations of slope: A review of state standards. School Science and Mathematics, 112(5), 270-277. https://doi.org/10.1111/j.1949-8594.2012.00135.x
Stewart, J. (2012). Cálculo de una variable: Trascendentes tempranas. (7a. ed.) Cengage Learning. https://eva.interior.udelar.edu.uy/pluginfile.php/96366/mod_resource/content/1/Stewart.%20C%C3%A1lculo%20de%20una%20variable..pdf
Stump, S. (2001). High school precalculus students’ understanding of slope as measure. School Science and Mathematics, 101(2), 81-89. https://doi.org/10.1111/j.1949-8594.2001.tb18009.x
Wilhelm, J. A., y Confrey, J. (2003). Projecting rate of change in the context of motion onto the context of money. International Journal of Mathematical Education in Science and Technology, 34(6), 887-904. https://doi.org/10.1080/00207390310001606660
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Gerardo Salgado-Beltrán, Javier García-García
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.