Concepciones alternativas sobre el concepto de pendiente en estudiantes de nivel medio superior de una zona rural

Autores/as

DOI:

https://doi.org/10.33010/ie_rie_rediech.v15i0.1942

Palabras clave:

Concepciones alternativas, pendiente, entrevista basadas en tareas, zona rural

Resumen

Este artículo reporta los resultados de una investigación cuyo objetivo fue identificar las concepciones alternativas sobre el concepto de pendiente en estudiantes de nivel medio superior pertenecientes a una zona rural. Se empleó una entrevista basada en tareas para la recolección de datos de 28 estudiantes de 12° grado y el método de análisis temático para su respectivo análisis. Las concepciones alternativas identificadas fueron la pendiente como: la longitud de un segmento de recta, un objeto, una ecuación lineal o algún elemento de esta, el valor del ángulo de inclinación de una recta, un concepto propio o característico de las rectas, la distancia del eje x a un punto de esta, la pendiente de una recta gráficamente representa un punto en el plano cartesiano, y el signo de la pendiente queda determinado por el signo del semi eje x donde se ubica la gráfica. Estos resultados nos invitan a reflexionar sobre futuras investigaciones para promover una mejora en el aprendizaje de la pendiente.

Biografía del autor/a

Gerardo Salgado-Beltrán, Universidad Autónoma de Guerrero, México

Es Doctor en Ciencias con especialidad en Matemática Educativa por la UAGro. Es miembro del Sistema Nacional de Investigadoras e Investigadores, Nivel C, y miembro del Padrón Estatal de Investigadores del Estado de Guerrero. Ejerce la docencia en diferentes programas educativos de la UAGro. Es miembro del Cuerpo Académico “Matemática Educativa”. Actualmente estudia la comprensión de objetos matemáticos a través de las conexiones matemáticas.

Javier García-García, Universidad Autónoma de Guerrero, México

(Autor de correspondencia). Es Doctor en Ciencias con especialidad en Matemática Educativa por la UAGro. Es miembro del Sistema Nacional de Investigadoras e Investigadores, Nivel 1, e impacta en diversos programas educativos de la misma universidad. Actualmente trabaja en la línea de conexiones matemáticas y su incorporación al aula para la mejora de la comprensión, de la cual han derivado diversos artículos científicos como “Mathematical understanding based on the mathematical connections made by Mexican high school students regarding linear equations and functions” (2024).

Citas

Abouchedid, K., y Nasser, R. (2000). The role of presentation and response format in understanding, preconceptions and alternative concepts in algebra problems. United States Department of Education. https://files.eric.ed.gov/ fulltext/ED438174.pdf

Abreu, R., Dolores, C., Sánchez, J. L., y Sigarreta, J. M. (2020). El concepto de pendiente: estado de la investigación y prospectivas. Números, 103, 81-98. http://ri.uagro.mx/bitstream/handle/uagro/1960/ART_6385_20.pdf

Agudelo-Valderrama, C., y Martínez, D. (2016). In pursuit of a connected way of knowing: The case of one mathematics teacher. International Journal of Science and Mathematics Education, 14(4), 719-737. https://www.researchgate.net/publication/270511027_In_Pursuit_of_a_Connected_Way_of_Knowing_The_Case_of_One_Mathematics_Teacher

An, S., y Wu, Z. (2012). Enhancing mathematics teachers’ knowledge of students’ thinking from assessing and analyzing misconceptions in homework. International Journal of Science and Mathematics Education, 10, 717-753. https://link.springer.com/article/10.1007/s10763-011-9324-x

Billings, E., y Klanderman, D. (2000). Graphical representations of speed: Obstacles preservice K-8 teachers experience. School Science and Mathematics, 100(8), 440-450. https://doi.org/10.1111/j.1949-8594.2000.tb17332.x

Birgin, O. (2012). Investigation of eighth-grade students’ understanding of the slope of the linear function. Bolema: Boletim de Educação Matemática, 26(42a), 139-162. https://doi.org/10.1590/S0103-636X2012000100008

Blanco, B., y Blanco, L. J. (2009). Contextos y estrategias en la resolución de problemas de primaria. Números, 71, 75-85. https://funes.uniandes.edu.co/funes-documentos/contextos-y-estrategias-en-la-resolucion-de-problemas-de-primaria/

Bostan, A. (2016). Conceptual level of understanding about sound concept: Sample of fifth grade students. e-International Journal of Educational Research, 7(1), 87-97. https://files.eric.ed.gov/fulltext/ED565788.pdf

Braun, V., y Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. http://dx.doi.org/10.1191/1478088706qp063oa

Braun, V., y Clarke, V. (2012). Thematic analysis. En H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf y K. J. Sher (eds.), APA handbook of research methods in psychology, vol. 2. Research designs: Quantitative, qualitative, neuropsychological, and biological (pp. 57-71). American Psychological Association. https://doi.org/10.1037/13620-004

Byerley, C., y Thompson, P. (2017). Secondary mathematics teachers’ meanings for measure, slope, and rate of change. The Journal of Mathematical Behavior, 48(1), 168-193. https://doi.org/10.1016/j.jmathb.2017.09.003

Carlson, M., Jacobs, S., Coe, E., Larsen, S., y Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958

Chhabra, M., y Baveja, B. (2012). Exploring minds: Alternative conceptions in science. Procedia - Social and Behavioral Sciences, 55, 1069-1078. https://doi.org/10.1016/j.sbspro.2012.09.599

Chi, M. T. H., Roscoe, R. D., Slotta, J. D., Roy, M., y Chase, C. C. (2012). Misconceived causal explanations for emergent processes. Cognitive Science, 36(1), 1-61. https://doi.org/10.1111/j.1551-6709.2011.01207.x

Cho, P., y Nagle, C. (2017). Procedural and conceptual difficulties with slope: An analysis of students’ mistakes on routine tasks. International Journal of Research in Education and Science, 3(1), 135-150. https://files.eric.ed.gov/fulltext/EJ1126738.pdf

Choy, B., Lee, M., y Mizzi, A. (2015). Textbook signatures: An exploratory study of the notion of gradient in Germany, Singapore and South Korea. En K. Beswick, T. Muir y J. Wells (eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (pp. 161-168). PME. https://www.researchgate.net/publication/280301687_TEXTBOOK_SIGNATURES_AN_EXPLORATORY_STUDY_OF_THE_NOTION_OF_GRADIENT_IN_GERMANY_SINGAPORE_AND_SOUTH_KOREA

Clarkson, P. C. (2004). Teaching mathematics in multilingual classrooms: The global importance of contexts. En I. P. Cheong, H. S. Dhindsa, I. J. Kyeleve y O. Chukwu (eds.), Globalisation trends in science, mathematics and technical education (pp. 9-23). Universiti Brunei Darussalam. https://acuresearchbank.acu.edu.au/item/89v82/teaching-mathematics-in-multilingual-classrooms-the-global-importance-of-contexts

Coe, E. E. (2007). Modeling teachers’ ways of thinking about rate of change [Tesis de Doctorado no publicada]. Arizona State University. http://pat-thompson.net/PDFversions/Theses/2007Ted.pdf

Confrey, J. (1990). A review of research on students conceptions in mathematics, science and programming. En C. E. Cazden (ed.), Review of research in education (pp. 3-56). American Educational Research Association. https://doi.org/10.2307/1167350

Denbel, D. G. (2014). Students’ misconceptions of the limit concept in a first Calculus course. Journal of Education and Practice, 5(34), 24-40. https://core.ac.uk/download/pdf/234636567.pdf

Dolores-Flores, C., e Ibáñez-Flores, G. (2020). Conceptualizaciones de la pendiente en libros de texto de matemáticas. Bolema: Boletim de Educação Matemática, 34(67), 825-846. https://doi.org/10.1590/1980-4415v34n67a22

Dolores, C. (2004). Acerca del análisis de funciones a través de sus gráficas: concepciones alternativas en estudiantes de bachillerato. Revista Latinoamericana de Investigación en Matemática Educativa, 7(3), 195-218. https://www.redalyc.org/pdf/335/33570301.pdf

Dolores, C., Alarcón, G., y Albarrán, D. (2002). Concepciones alternativas sobre las gráficas cartesianas del movimiento: el caso de la velocidad y la trayectoria. Revista Latinoamericana de Investigación en Matemática Educativa, 5(3), 225-250. https://n9.cl/ha4qw

Dolores, C., Rivera, M. I., y Moore-Russo, D. (2020). Conceptualizations of slope in Mexican intended curriculum. School Science and Mathematics, 120(2), 104-115. https://doi.org/10.1111/ssm.12389

Dolores-Flores, C., Rivera-López, M. I., y García-García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, 50(3), 369-389. https://doi.org/10.1080/0020739X.2018.1507050

Fujii, T. (2020). Misconception and alternative conceptions in mathematics education. En S. Lerman (ed.), Encyclopedia of Mathematics Education (pp. 625-627). Springer. https://doi.org/10.1007/978-3-030-15789-0_114

García-García, J. (2014). El contexto cultural y la resolución de problemas: vistos desde el salón de clases de una comunidad Ñuu Savi. Revista Latinoamericana de Etnomatemática: Perspectivas Socioculturales de la Educación Matemática, 7(1), 50-73. https://www.redalyc.org/articulo.oa?id=274030901003

García, J. (2018). Conexiones matemáticas y concepciones alternativas asociadas a la derivada y a la integral en estudiantes del preuniversitario [Tesis de Doctorado inédita]. Universidad Autónoma de Guerrero. https://www.researchgate.net/profile/Javier_Garcia-Garcia4

Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. En A. E. Kelly y R. A. Lesh (eds.), Handbook of research design in mathematics and science education (pp. 517-545). Lawrence Erlbaum Associates. https://www.researchgate.net/profile/Gerald-Goldin/publication/313744920_A_scientific_perspective_on_structured_task-based_interviews_in_mathematics_education_research/links/5beb10d64585150b2bb4d8cd/A-scientific-perspective-on-structured-task-based-interviews-in-mathematics-education-research.pdf

Juárez, D., y Rodríguez, C. R. (2016). Factores que afectan a la equidad educativa en escuelas rurales de México. Revista de Investigación Educacional Latinoamericana, 53(2), 1-15. https://doi.org/10.7764/PEL.53.2.2016.8

Kaplan, A., Ozturk, M., y Ocal, M. F. (2015). Relieving of misconceptions of derivative concept with derive. International Journal of Research in Education and Science, 1(1), 64-74. https://files.eric.ed.gov/fulltext/ED564414.pdf

Kastberg, S. E. (2002). Understanding mathematical concepts: the case of the logarithmic function [Tesis de Doctorado no publicada]. University of Georgia. https://jwilson.coe.uga.edu/Pers/Dissertations/kastberg_signe_e_200205_phd.pdf

Lehmann, C. H. (1980). Geometría analítica. Limusa. https://www.cimat.mx/ciencia_para_jovenes/bachillerato/libros/[Lehmann]GeometriaAnalitica.pdf

Lobato, J., y Thanheiser, E. (2002). Developing understanding of ratio as measure as a foundation for slope. En B. Litwiller y G. Bright (eds.), Making sense of fractions, ratios, and proportions: 2002 yearbook (pp. 162-175). National Council of Teachers of Mathematics. https://www.researchgate.net/publication/264860927_Developing_understanding_of_ratio_as_measure_as_a_foundation_for_slope

López, G., y Tinajero, G. (2011). Los maestros indígenas ante la diversidad étnica y lingüística en contextos de migración. Cuadernos de Comillas, 1, 5-21. https://aulaintercultural.org/2011/07/17/los-maestros-indigenas-ante-la-diversidad-etnica-y-linguistica-en-contextos-de-migracion/

López, L., Beltrán, A., y Pérez, M. A. (2014). Deserción escolar en universitarios del centro universitario UAEM Temascaltepec, México: estudio de caso de la licenciatura de Psicología. Revista Iberoamericana de Evaluación Educativa, 7(1), 91-104. https://revistas.uam.es/riee/article/view/3390

Lucariello, J., Tine, M. T., y Ganley, C. M. (2014). A formative assessment of students’ algebraic variable misconceptions. Journal of Mathematical Behavior, 33, 30-41. https://doi.org/10.1016/j.jmathb.2013.09.001

Mahmud, M., y Gutiérrez, O. (2010). Estrategia de enseñanza basada en el cambio conceptual para la transformación de ideas previas en el aprendizaje de las ciencias. Formación Universitaria, 3(1), 11-20. https://www.scielo.cl/pdf/formuniv/v3n1/art03.pdf

Mevarech, Z., y Kramarsky, B. (1997). From verbal description to graphic representation: Stability and change in students' alternative conceptions. Educational Studies in Mathematics, 32(3), 229-263. https://doi.org/10.1023/A:1002965907987

Moore-Russo, D., Conner, A., y Rugg, K. (2011). Can slope be negative in 3-space? Studying concept image of slope through collective definition construction. Educational Studies in Mathematics, 76(1), 3-21. https://link.springer.com/article/10.1007/s10649-010-9277-y

Nagle, C., y Moore-Russo, D. (2013). The concept of slope: Comparing teachers’ concept images and instructional content. Investigations in Mathematics Learning, 6(2), 1-18. https://www.researchgate.net/publication/261348486_The_Concept_of_Slope_Comparing_Teachers'_Concept_Images_and_Instructional_Content

Nagle, C., y Moore-Russo, D. (2014). Slope across the curriculum: Principles and standards for school mathematics and common core state standards. The Mathematics Educator, 23(2), 40-59. https://files.eric.ed.gov/fulltext/EJ1027058.pdf

Narjaikaewa, P. (2013). Alternative conceptions of primary school teachers of science about force and motion. Procedia - Social and Behavioral Sciences, 88(2), 250-257. https://www.researchgate.net/publication/275542437_Alternative_Conceptions_of_Primary_School_Teachers_of_Science_about_Force_and_Motion

Osborne, R. J., y Wittrock, M. C. (1983). Learning science: A generative process. Science Education, 67(4), 498-508. https://doi.org/10.1002/sce.3730670406

Planea [Plan Nacional para la Evaluación de los Aprendizajes] (2018). Resultados nacionales de logro en EMS. Lenguaje y comunicación, matemáticas. Instituto Nacional para la Evaluación de la Educación.

Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A., e Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10(6), 1393-1414. https://doi.org/10.1007/s10763-012-9344-1

Rivera, M. I., y Dolores, C. (2021). Preconcepciones de pendiente en estudiantes de educación secundaria. Enseñanza de las Ciencias, 39(1), 195-217. https://doi.org/10.5565/rev/ensciencias.3045

Rivera, M. I., Salgado, G., y Dolores, C. (2019). Explorando las conceptualizaciones de la pendiente en estudiantes universitarios. Bolema, 33(65), 1027-1046. http://dx.doi.org/10.1590/1980-4415v33n65a03

Salgado, G. (2020). Conceptualizaciones de pendiente que poseen los profesores del bachillerato y las que enseñan a sus estudiantes [Tesis de Doctorado inédita]. Universidad Autónoma de Guerrero. http://ri.uagro.mx/bitstream/handle/uagro/3834/TD_5142653_20.pdf

Salgado, G., Rivera, M. I., y Dolores, C. (2020). Conceptualizaciones de pendiente: contenido que enseñan los profesores del bachillerato. Unión - Revista Iberoamericana de Educación Matemática, 15(57), 41-56. https://n9.cl/uil5j1

Schmelkes, S. (2014). El derecho a la educación. En El derecho a una educación de calidad. Informe 2014. Instituto Nacional de Evaluación Educativa. https://www.inee.edu.mx/wp-content/uploads/2018/12/P1D239-1.pdf

Serhan, D. (2015). Students’ understanding of the definite integral concept. International Journal of Research in Education and Science, 1(1), 84-88. https://files.eric.ed.gov/fulltext/EJ1105099.pdf

Stanton, M., y Moore-Russo, D. (2012). Conceptualizations of slope: A review of state standards. School Science and Mathematics, 112(5), 270-277. https://doi.org/10.1111/j.1949-8594.2012.00135.x

Stewart, J. (2012). Cálculo de una variable: Trascendentes tempranas. (7a. ed.) Cengage Learning. https://eva.interior.udelar.edu.uy/pluginfile.php/96366/mod_resource/content/1/Stewart.%20C%C3%A1lculo%20de%20una%20variable..pdf

Stump, S. (2001). High school precalculus students’ understanding of slope as measure. School Science and Mathematics, 101(2), 81-89. https://doi.org/10.1111/j.1949-8594.2001.tb18009.x

Wilhelm, J. A., y Confrey, J. (2003). Projecting rate of change in the context of motion onto the context of money. International Journal of Mathematical Education in Science and Technology, 34(6), 887-904. https://doi.org/10.1080/00207390310001606660

Descargas

Publicado

2024-05-28

Cómo citar

Salgado-Beltrán, G., & García-García, J. . (2024). Concepciones alternativas sobre el concepto de pendiente en estudiantes de nivel medio superior de una zona rural. IE Revista De Investigación Educativa De La REDIECH, 15, e1942. https://doi.org/10.33010/ie_rie_rediech.v15i0.1942

Número

Sección

Reportes de investigación