Relaciones entre la matemática, el pensamiento algorítmico y el pensamiento computacional

Autores/as

DOI:

https://doi.org/10.33010/ie_rie_rediech.v15i0.1929

Palabras clave:

Algoritmos, enseñanza de la matemática, estilos de pensamiento, habilidades específicas, pensamiento abstracto

Resumen

En un mundo cada vez más influenciado por las herramientas computacionales disponibles y la aceleración en el desarrollo de estas, es necesario también incrementar la investigación epistemológica sobre las interacciones entre la matemática y las ciencias de la computación. Por ello se considera relevante estudiar las relaciones entre la habilidad de algoritmizar, el pensamiento matemático, el pensamiento algorítmico y el pensamiento computacional. Sin embargo, múltiples definiciones de pensamiento computacional no incorporan explícitamente al pensamiento algorítmico ni enfatizan su dimensión matemática. La proposición que se plantea en este ensayo científico es que existen relaciones, a veces implícitas, muy importantes entre los conceptos de algoritmización, pensamiento matemático, pensamiento algorítmico y pensamiento computacional. Y el objetivo es identificar las relaciones entre esos conceptos, y con ello fortalecer la literatura científica que busca abordarlos de forma integrada. Se concluye que el pensamiento algorítmico es una parte fundamental del pensamiento computacional, pero también es un tipo de pensamiento matemático; que la habilidad de algoritmizar es básica en la matemática y es fundamental en el pensamiento algorítmico y en el computacional, y que el pensamiento computacional brinda importantes ayudas en la exploración y descubrimiento de la matemática.

 

Biografía del autor/a

Eduardo Adam Navas-López, Universidad de El Salvador

Profesor universitario de la Facultad de Ciencias Naturales y Matemática de la Universidad de El Salvador. Es Maestro en Didáctica de la Matemática por la Universidad de El Salvador y Licenciado en Ciencias de la Computación por la Universidad Centroamericana “José Simeón Cañas”. Ha participado como ponente en diversos congresos internacionales sobre didáctica de la matemática y ciencias de la computación. Sus áreas principales de interés incluyen el pensamiento algorítmico, el pensamiento computacional, el arte matemático generado por computadora, los modelos cognitivos de comprensión de conceptos matemáticos, la etnomatemática y sus intersecciones.

Citas

ACM [Association for Computing Machinery], Code.org, Computer Science Teachers Association, Cyber Innovation Center, y National Math and Science Initiative (2016). K–12 Computer Science Framework. https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832-835. https://doi.org/10.1093/comjnl/bxs074

Arévalo-Mercado, C. A., Estrada-Rentería, B. G., y Muñoz-Andrade, E. L. (2019). El efecto de la teoría de carga cognitiva en el aprendizaje de la programación básica. Entorno, 67, 169-176. https://doi.org/10.5377/entorno.v0i67.7500

Barr, D., Harrison, J., y Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning & Leading with Technology, 38(6), 20-23. https://eric.ed.gov/?id=EJ918910

Batanero Bernabeu, M. d. C. (2013). Sentido estadístico: componentes y desarrollo. Probabilidad Condicionada: Revista de Didáctica de la Estadística, 1, 55-64. https://documat.unirioja.es/servlet/articulo?codigo=4770161

Blanco-Hamad, A., Salgado-Castillo, A., y Alonso-Berenguer, I. (2016). Habilidades para la algoritmización computacional en la Licenciatura en Educación: especialidad Educación Laboral-Informática. Maestro y Sociedad. Revista Electrónica para Maestros y Profesores, 13(1), 18-30. https://maestroysociedad.uo.edu.cu/index.php/MyS/article/view/986

Bordignon, F., y García-Marín, D. (2018). Principios del pensamiento computacional. En R. Aparici y D. García-Marín (eds.), Comunicar y educar en el mundo que viene (2a. ed., pp. 177-191). Gedisa.

Broley, L., Buteau, C., y Muller, E. (2017). (Legitimate peripheral) computational thinking in mathematics. Tenth Congress of the European Society for Research in Mathematics Education (CERME 10). https://hal.archives-ouvertes.fr/hal-01946353

Broley, L., Caron, F., y Saint-Aubin, Y. (2018). Levels of programming in mathematical research and university mathematics education. International Journal of Research in Undergraduate Mathematics Education, 4(1), 38-55. https://doi.org/10.1007/s40753-017-0066-1

Bubnó, K. T., y Takács, V. L. (2014). Solving word problems by computer programming. En A. Ambrus y É. Vásárhelyi (eds.), 15th ProMath Problem Solving in Mathematics Education Conference (pp. 193-208). Mathematics Teaching and Education Center. https://helda.helsinki.fi/bitstream/handle/10138/230168/ProMath2013.pdf

Buteau, C., Jarvis, D. H., y Lavicza, Z. (2014). On the integration of Computer Algebra Systems (CAS) by Canadian mathematicians: Results of a national survey. Canadian Journal of Science, Mathematics and Technology Education, 14(1), 35-57. https://doi.org/10.1080/14926156.2014.874614

Buteau, C., Muller, E., Marshall, N., Sacristán, A. I., y Mgombelo, J. (2016). Undergraduate mathematics students appropriating programming as a tool for modelling, simulation, and visualization: A case study. Digital Experiences in Mathematics Education, 2(2), 142-166. https://doi.org/10.1007/s40751-016-0017-5

CSTA [Computer Science Teachers Association] (2017). CS standards. https://www.csteachers.org/page/standards

Congacha Aushay, E. P., Santillán Castillo, J. R., Guerra Salazar, J. E., y Barba Vera, R. G. (2018). Empleo de una aplicación informática como estrategia didáctica para el desarrollo de aptitudes académicas. Revista Educación, 42(2), 398-413. https://doi.org/10.15517/revedu.v42i2.27472

Coscarelli, W. C., Visscher, M. O., y Schwen, T. M. (1976). Algorithmization and transfer of learning. Annual Meeting of the American Educational Research Association, 19-23. http://files.eric.ed.gov/fulltext/ED121608.pdf

Czerkawski, B. C., y Lyman, E. W. (2015). Exploring issues about computational thinking in higher education. TechTrends, 59(2), 57-65. https://doi.org/10.1007/s11528-015-0840-3

D’Ambrosio, U. (1999). Literacy, matheracy, and technoracy: A trivium for today. Mathematical Thinking and Learning, 1(2), 131-153. https://doi.org/10.1207/s15327833mtl0102_3

Davis, G. E., y McGowen, M. A. (2001). Jennifer’s journey: Seeing and remembering mathematical connections in a pre-service elementary teachers course. En M. van den Heuvel-Panhuizen (ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (PME 25) (vol. 2, pp. 305-312). International Group for the Psychology of Mathematics Education. https://files.eric.ed.gov/fulltext/ED466960.pdf

Delgado Rubí, J. R. (1998). Las habilidades generales matemáticas. En H. Hernández (ed.), Cuestiones de didáctica de la matemática. Homo Sapiens.

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60(6), 33-39. https://doi.org/10.1145/2998438

Dijkstra, E. W. (1974). Programming as a discipline of mathematical nature. The American Mathematical Monthly, 81(6), 608-612. https://doi.org/10.1080/00029890.1974.11993624

Doğan, A. (2020). Algorithmic thinking in primary education. International Journal of Progressive Education, 16(4), 286-301. https://doi.org/10.29329/ijpe.2020.268.18

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., y Basnet, R. B. (2017). Algorithmic thinking, cooperativity, creativity, critical thinking, and problem solving: Exploring the relationship between computational thinking skills and academic performance. Journal of Computers in Education, 4(4), 355-369. https://doi.org/10.1007/s40692-017-0090-9

Douadi, B., Tahar, B., y Hamid, S. (2012). Smart edutainment game for algorithmic thinking. Procedia - Social and Behavioral Sciences, 31, 454-458. https://doi.org/10.1016/j.sbspro.2011.12.085

Fernández Millán, E. (2013). Razonamiento combinatorio y el currículo español. Probabilidad Condicionada: Revista de Didáctica de la Estadística, 1, 539-545. https://dialnet.unirioja.es/servlet/articulo?codigo=5487251

Freiman, V., Broley, L., Buteau, C., y Vasilyeva, N. (2018). Report from working group focussed on research-based understandings of the interplay between the affordances of computational thinking and mathematics. En Online Proceedings of the Computational Thinking in Mathematics Education Symposium. University of Ontario Institute of Technology. http://ctmath.ca/wp-content/uploads/2018/10/Symposium_Working-Report_-Frieman-Et-al.pdf

Futschek, G. (2006). Algorithmic thinking: The key for understanding computer science. En R. T. Mittermeir (ed.), Informatics education – The bridge between using and understanding computers. ISSEP 2006. Lecture Notes in Computer Science (vol. 4226, pp. 159-168). Springer-Verlag. https://doi.org/10.1007/11915355_15

Futschek, G., y Moschitz, J. (2010). Developing algorithmic thinking by inventing and playing algorithms. En Proceedings of the 2010 Constructionist Approaches to Creative Learning, Thinking and Education: Lessons for the 21st Century (Constructionism 2010) (pp. 1-10). http://publik.tuwien.ac.at/files/PubDat_187461.pdf

Gallardo Romero, J., y González, J. L. (2007). Una aproximación operativa al diagnóstico y la evaluación de la comprensión del conocimiento matemático. PNA. Revista de Investigación en Didáctica de la Matemática, 1(1). http://revistaseug.ugr.es/index.php/pna/article/view/6217

Gayo Avello, D., Cernuda del Río, A., Cueva Lovelle, J. M., Díaz Fondón, M. Á., García Fuente, M. del P. A., y Redondo López, J. M. (2003). Reflexiones y experiencias sobre la enseñanza de POO como único paradigma. En IX Jornadas sobre la Enseñanza Universitaria de la Informática (JENUI’2003). http://hdl.handle.net/10651/30804

Grover, S., y Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051

Grover, S., y Pea, R. (2018). Computational thinking: A competency whose time has come. En S. Sentance, E. Barendsen y C. Schulte (eds.), Computer science education: Perspectives on teaching and learning in school. Bloomsbury Publishing.

Grozdev, S., y Terzieva, T. (2011). Research of the concept of algorithmic thinking in teaching computer science. En The International Scientific-Practical Conference “Informatization of Education–2011” (pp. 112-119).

Grozdev, S., y Terzieva, T. (2015). A didactic model for developmental training in computer science. Journal of Modern Education Review, 5(5), 470-480. https://doi.org/10.15341/jmer(2155-7993)/05.05.2015/005

Guzdial, M., y Soloway, E. (2002). Teaching the Nintendo generation to program. Communications of the ACM, 45(4), 17-21. https://doi.org/10.1145/505248.505261

Hidayat, T., Susilaningsih, E., y Kurniawan, C. (2018). The effectiveness of enrichment test instruments design to measure students’ creative thinking skills and problem solving. Thinking Skills and Creativity, 29, 161-169. https://doi.org/10.1016/j.tsc.2018.02.011

Hoyles, C., y Noss, R. (2015). Revisiting programming to enhance mathematics learning. En Math+Coding Symposium.

Hurlburt, G. F. (2018). Thinking critically about algorithmic thinking. IT Professional, 20(2), 5-10. https://doi.org/10.1109/MITP.2018.021921644

Israel, M., y Lash, T. (2019). From classroom lessons to exploratory learning progressions: Mathematics + computational thinking. Interactive Learning Environments, 28(3), 362-382. https://doi.org/10.1080/10494820.2019.1674879

ISTE, y CSTA [International Society Technology Education, y Computer Science Teachers Association] (2011). Operational Definition of Computational Thinking for K–12 Education. https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf

Juškevičienė, A. (2020). Developing algorithmic thinking through computational making. En D. Gintautas, B. Jolita y K. Janusz (eds.), Data science: New issues, challenges and applications (vol. 869, pp. 183-197). Springer. https://doi.org/10.1007/978-3-030-39250-5_10

Kalelioğlu, F., y Gülbahar, Y. (2014). The effect of instructional techniques on critical thinking and critical thinking dispositions in online discussion. Educational Technology & Society, 17(1), 248-258. https://www.jstor.org/stable/jeductechsoci.17.1.248

Kalelioğlu, F. K., Gülbahar, Y., y Kukul, V. (2016). A framework for computational thinking based on a systematic research review. Baltic Journal Modern Computing, 4(3), 583-596. https://www.bjmc.lu.lv/fileadmin/user_upload/lu_portal/projekti/bjmc/Contents/4_3_15_Kalelioglu.pdf

Kátai, Z. (2015). The challenge of promoting algorithmic thinking of both sciences-and humanities-oriented learners. Journal of Computer Assisted Learning, 31(4), 287-299. https://doi.org/10.1111/jcal.12070

Kilhamn, C., y Bråting, K. (2019). Algebraic thinking in the shadow of programming. En U. T. Jankvist, M. van den Heuvel-Panhuizen y M. Veldhuis (eds.), Eleventh Congress of the European Society for Research in Mathematics Education (CERME 11) (vol. TWG03, núm. 7). Freudenthal Group. https://hal.archives-ouvertes.fr/hal-02429028

Kinnunen, P., y Malmi, L. (2006). Why Students drop out CS1 course? En Proceedings of the Second International Workshop on Computing Education Research (pp. 97-108). Association for Computing Machinery. https://doi.org/10.1145/1151588.1151604

Knuth, D. E. (1974). Computer science and its relation to mathematics. The American Mathematical Monthly, 81(4), 323-343. https://doi.org/10.1080/00029890.1974.11993556

Knuth, D. E. (1985). Algorithmic thinking and mathematical thinking. The American Mathematical Monthly, 92(3), 170-181. https://doi.org/10.1080/00029890.1985.11971572

Korkmaz, Ö., Çakir, R., y Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558-569. https://doi.org/10.1016/j.chb.2017.01.005

Kurland, D. M., Clement, C. A., Mawby, R., y Pea, R. D. (1987). Mapping the cognitive demands of learning to program. En D. N. Perkins, J. Lochhead y J. C. Bishop (eds.), Thinking: The Second International Conference. Routledge.

Lockwood, E., DeJarnette, A. F., Asay, A., y Thomas, M. (2016). Algorithmic thinking: An initial characterization of computational thinking in mathematics. En M. B. Wood, E. E. Turner, M. Civil y J. A. Eli (eds.), Proceedings of the 38th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (PMENA 38) (pp. 1588-1595). The University of Arizona. https://files.eric.ed.gov/fulltext/ED583797.pdf

Lovász, L. (1988). Algorithmic mathematics: An old aspect with a new emphasis. En Proceedings of 6th International Congress on Mathematics Education (pp. 67-78). https://web.cs.elte.hu/~%20lovasz/icme.pdf

Martínez-López, L. G., y Gualdrón-Pinto, E. (2018). Fortalecimiento del pensamiento variacional a través de una intervención mediada con TIC en estudiantes de grado noveno. Revista de Investigación, Desarrollo e Innovación, 9(1), 91-102. https://doi.org/10.19053/20278306.v9.n1.2018.8156

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D., Laxer, C., Thomas, L., Utting, I., y Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of programming skills of first-year CS students. En Working Group Reports from ITiCSE on Innovation and Technology in Computer Science Education (pp. 125-180). https://doi.org/10.1145/572133.572137

Mingus, T. T. Y., y Grassl, R. M. (1998). Algorithmic and recursive thinking: Current beliefs and their implications for the future. En L. J. Morrow y M. J. Kenney (eds.), The teaching and learning of algorithms in school mathematics (pp. 32-43). National Council of Teacher of Mathematics.

Misfeldt, M., y Ejsing-Duun, S. (2015). Learning mathematics through programming: An instrumental approach to potentials and pitfalls. En K. Krainer y N. Vondrová (eds.), Ninth Congress of the European Society for Research in Mathematics Education (CERME 9) (pp. 2524-2530). Charles University in Prague/ERME. https://hal.archives-ouvertes.fr/hal-01289367

Modeste, S. (2012a). Enseigner l’algorithme pour quoi? Quelles nouvelles questions pour les mathématiques? Quels apports pour l’apprentissage de la preuve? [Tesis doctoral]. Universidad de Grenoble. HAL Theses. Archivo tel-00783294. https://tel.archives-ouvertes.fr/tel-00783294

Modeste, S. (2012b). La pensée algorithmique: Apports d’un point de vue extérieur aux mathématiques. En J.-L. Dorier y S. Gousseau Coutat (eds.), Enseignement des Mathématiques et Contrat Social: Enjeux et Défis pour le 21e Siècle – Actes du Colloque Espace Mathématique Francophone 2012 (pp. 467-479). https://www.emf.unige.ch/files/6514/5320/2307/EMF2012GT3MODESTE.pdf

Modeste, S. (2016). Impact of informatics on mathematics and its teaching. En F. Gadducci y M. Tavosanis (eds.), History and philosophy of computing (pp. 243-255). Springer. https://doi.org/10.1007/978-3-319-47286-7_17

NRC [National Research Council] (1989). Everybody counts: A report to the nation on the future of mathematics education. National Academies Press.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books. https://dl.acm.org/doi/pdf/10.5555/1095592

Pyzara, A. (2012). Algorithmisation in teaching mathematics. Didactica Mathematicae, 34, 51-68. https://doi.org/10.14708/dm.v34i0.417

Ramadhan, H. A. (2000). Programming by discovery. Journal of Computer Assisted Learning, 16(1), 83-93. https://doi.org/10.1046/j.1365-2729.2000.00118.x

Rasmussen, C., Zandieh, M., King, K., y Teppo, A. (2005). Advancing mathematical activity: A practice-oriented view of advanced mathematical thinking. Mathematical Thinking and Learning, 7(1), 51-73. https://doi.org/10.1207/s15327833mtl0701_4

Ruiz Ledesma, E. F., y Valdemoros Álvarez, M. E. (2004). Connections between qualitative and quantitative thinking about proportion: The case of Paulina. En M. J. Hoines y A. B. Fuglestad (eds.), The 28th International Conference of the International Group for the Psychology of Mathematics Education. International Group for the Psychology of Mathematics Education. https://eric.ed.gov/?id=ED489542

Sadykova, O. V., e Il’bahtin, G. G. (2019). The definition of algorithmic thinking. En Proceedings of the International Session on Factors of Regional Extensive Development (FRED 2019) (pp. 419-422). Atlantis Press. https://doi.org/10.2991/fred-19.2020.85

Sadykova, O. V., y Usolzev, A. (2018). On the concept of algorithmic thinking. SHS Web Conferences – International Conference on Advanced Studies in Social Sciences and Humanities in the Post-Soviet Era (ICPSE 2018), 55, 03016. https://doi.org/10.1051/shsconf/20185503016

Schoenfeld, A. H. (2013). Reflections on problem solving theory and practice. The Mathematics Enthusiast, 10(1), 9-34. https://doi.org/10.54870/1551-3440.1258

Selby, C. C., y Woollard, J. (2013). Computational thinking: The developing definition. En 18th Annual Conference on Innovation and Technology in Computer Science Education. https://eprints.soton.ac.uk/356481/

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1-36. https://doi.org/10.1007/BF00302715

Shute, V. J., Sun, C., y Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003

Stephens, M., y Kadijevich, D. M. (2020). Computational/algorithmic thinking. En S. Lerman (ed.), Encyclopedia of Mathematics Education (pp. 117-123). Springer. https://doi.org/10.1007/978-3-030-15789-0_100044

Tall, D. (ed.). (2002). Advanced mathematical thinking. Kluwer Academic Publishers.

Tang, X., Yin, Y., Lin, Q., Hadad, R., y Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 1-22. https://doi.org/10.1016/j.compedu.2019.103798

Thom, J. S., y McGarvey, L. M. (2015). The act and artifact of drawing(s): Observing geometric thinking with, in, and through children’s drawings. ZDM, 47(3), 465-481. https://doi.org/10.1007/s11858-015-0697-0

Voogt, J., Fisser, P., Good, J., Mishra, P., y Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715-728. https://doi.org/10.1007/s10639-015-9412-6

Waterman, K., Goldsmith, L., Pasquale, M., Goldenberg, E. P., Malyn-Smith, J., DeMallie, A., y Lee, I. A. (2018). Integrating computational thinking into elementary mathematics and science curriculum materials and instruction. En Pixel (ed.), Conference Proceedings: The Future of Education. https://conference.pixel-online.net/files/foe/ed0008/FP/4648-ICL3076-FP-FOE8.pdf

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., y Wilensky, U. (2016). Defining Computational thinking for Mathematics and Science classrooms. Journal of Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1881), 3717-3725. https://doi.org/10.1098/rsta.2008.0118

Wing, J. M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7-14. https://doi.org/10.17471/2499-4324/922

Ziatdinov, R., y Musa, S. (2012). Rapid mental computation system as a tool for algorithmic thinking of elementary school students development. European Researcher, 25(7), 1105-1110. http://www.erjournal.ru/pdf.html?n=1342467174.pdf

Descargas

Publicado

2024-04-23

Cómo citar

Navas-López, E. A. (2024). Relaciones entre la matemática, el pensamiento algorítmico y el pensamiento computacional. IE Revista De Investigación Educativa De La REDIECH, 15, e1929. https://doi.org/10.33010/ie_rie_rediech.v15i0.1929