Relationship between mathematics, algorithmic thinking and computational thinking
DOI:
https://doi.org/10.33010/ie_rie_rediech.v15i0.1929Keywords:
Algorithms, mathematics teaching, thinking styles, specific skills, abstract thinkingAbstract
In a world increasingly influenced by the available computational tools, and the acceleration in their development, it is also necessary to increase epistemological research on the interactions between mathematics and computer science. Therefore, it is considered relevant to study the relationship between the ability to algorithmize, mathematical thinking, algorithmic thinking and computational thinking. However, multiple definitions of computational thinking do not explicitly incorporate algorithmic thinking or emphasize its mathematical dimension. The proposition raised in this scientific essay is that there are very important relationships, sometimes implicit, between the concepts of algorithmization, mathematical thinking, algorithmic thinking and computational thinking. And the aim is to identify the relationship between these concepts, and thereby strengthen the scientific literature that seeks to address them in an integrated manner. It is concluded that algorithmic thinking is a fundamental part of computational thinking, but it is also a type of mathematical thinking; that the ability to algorithmize is basic in mathematics and is fundamental in algorithmic and computational thinking; and that computational thinking provides important aids in exploring and discovering mathematics.
References
ACM [Association for Computing Machinery], Code.org, Computer Science Teachers Association, Cyber Innovation Center, y National Math and Science Initiative (2016). K–12 Computer Science Framework. https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832-835. https://doi.org/10.1093/comjnl/bxs074
Arévalo-Mercado, C. A., Estrada-Rentería, B. G., y Muñoz-Andrade, E. L. (2019). El efecto de la teoría de carga cognitiva en el aprendizaje de la programación básica. Entorno, 67, 169-176. https://doi.org/10.5377/entorno.v0i67.7500
Barr, D., Harrison, J., y Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning & Leading with Technology, 38(6), 20-23. https://eric.ed.gov/?id=EJ918910
Batanero Bernabeu, M. d. C. (2013). Sentido estadístico: componentes y desarrollo. Probabilidad Condicionada: Revista de Didáctica de la Estadística, 1, 55-64. https://documat.unirioja.es/servlet/articulo?codigo=4770161
Blanco-Hamad, A., Salgado-Castillo, A., y Alonso-Berenguer, I. (2016). Habilidades para la algoritmización computacional en la Licenciatura en Educación: especialidad Educación Laboral-Informática. Maestro y Sociedad. Revista Electrónica para Maestros y Profesores, 13(1), 18-30. https://maestroysociedad.uo.edu.cu/index.php/MyS/article/view/986
Bordignon, F., y García-Marín, D. (2018). Principios del pensamiento computacional. En R. Aparici y D. García-Marín (eds.), Comunicar y educar en el mundo que viene (2a. ed., pp. 177-191). Gedisa.
Broley, L., Buteau, C., y Muller, E. (2017). (Legitimate peripheral) computational thinking in mathematics. Tenth Congress of the European Society for Research in Mathematics Education (CERME 10). https://hal.archives-ouvertes.fr/hal-01946353
Broley, L., Caron, F., y Saint-Aubin, Y. (2018). Levels of programming in mathematical research and university mathematics education. International Journal of Research in Undergraduate Mathematics Education, 4(1), 38-55. https://doi.org/10.1007/s40753-017-0066-1
Bubnó, K. T., y Takács, V. L. (2014). Solving word problems by computer programming. En A. Ambrus y É. Vásárhelyi (eds.), 15th ProMath Problem Solving in Mathematics Education Conference (pp. 193-208). Mathematics Teaching and Education Center. https://helda.helsinki.fi/bitstream/handle/10138/230168/ProMath2013.pdf
Buteau, C., Jarvis, D. H., y Lavicza, Z. (2014). On the integration of Computer Algebra Systems (CAS) by Canadian mathematicians: Results of a national survey. Canadian Journal of Science, Mathematics and Technology Education, 14(1), 35-57. https://doi.org/10.1080/14926156.2014.874614
Buteau, C., Muller, E., Marshall, N., Sacristán, A. I., y Mgombelo, J. (2016). Undergraduate mathematics students appropriating programming as a tool for modelling, simulation, and visualization: A case study. Digital Experiences in Mathematics Education, 2(2), 142-166. https://doi.org/10.1007/s40751-016-0017-5
CSTA [Computer Science Teachers Association] (2017). CS standards. https://www.csteachers.org/page/standards
Congacha Aushay, E. P., Santillán Castillo, J. R., Guerra Salazar, J. E., y Barba Vera, R. G. (2018). Empleo de una aplicación informática como estrategia didáctica para el desarrollo de aptitudes académicas. Revista Educación, 42(2), 398-413. https://doi.org/10.15517/revedu.v42i2.27472
Coscarelli, W. C., Visscher, M. O., y Schwen, T. M. (1976). Algorithmization and transfer of learning. Annual Meeting of the American Educational Research Association, 19-23. http://files.eric.ed.gov/fulltext/ED121608.pdf
Czerkawski, B. C., y Lyman, E. W. (2015). Exploring issues about computational thinking in higher education. TechTrends, 59(2), 57-65. https://doi.org/10.1007/s11528-015-0840-3
D’Ambrosio, U. (1999). Literacy, matheracy, and technoracy: A trivium for today. Mathematical Thinking and Learning, 1(2), 131-153. https://doi.org/10.1207/s15327833mtl0102_3
Davis, G. E., y McGowen, M. A. (2001). Jennifer’s journey: Seeing and remembering mathematical connections in a pre-service elementary teachers course. En M. van den Heuvel-Panhuizen (ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (PME 25) (vol. 2, pp. 305-312). International Group for the Psychology of Mathematics Education. https://files.eric.ed.gov/fulltext/ED466960.pdf
Delgado Rubí, J. R. (1998). Las habilidades generales matemáticas. En H. Hernández (ed.), Cuestiones de didáctica de la matemática. Homo Sapiens.
Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60(6), 33-39. https://doi.org/10.1145/2998438
Dijkstra, E. W. (1974). Programming as a discipline of mathematical nature. The American Mathematical Monthly, 81(6), 608-612. https://doi.org/10.1080/00029890.1974.11993624
Doğan, A. (2020). Algorithmic thinking in primary education. International Journal of Progressive Education, 16(4), 286-301. https://doi.org/10.29329/ijpe.2020.268.18
Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., y Basnet, R. B. (2017). Algorithmic thinking, cooperativity, creativity, critical thinking, and problem solving: Exploring the relationship between computational thinking skills and academic performance. Journal of Computers in Education, 4(4), 355-369. https://doi.org/10.1007/s40692-017-0090-9
Douadi, B., Tahar, B., y Hamid, S. (2012). Smart edutainment game for algorithmic thinking. Procedia - Social and Behavioral Sciences, 31, 454-458. https://doi.org/10.1016/j.sbspro.2011.12.085
Fernández Millán, E. (2013). Razonamiento combinatorio y el currículo español. Probabilidad Condicionada: Revista de Didáctica de la Estadística, 1, 539-545. https://dialnet.unirioja.es/servlet/articulo?codigo=5487251
Freiman, V., Broley, L., Buteau, C., y Vasilyeva, N. (2018). Report from working group focussed on research-based understandings of the interplay between the affordances of computational thinking and mathematics. En Online Proceedings of the Computational Thinking in Mathematics Education Symposium. University of Ontario Institute of Technology. http://ctmath.ca/wp-content/uploads/2018/10/Symposium_Working-Report_-Frieman-Et-al.pdf
Futschek, G. (2006). Algorithmic thinking: The key for understanding computer science. En R. T. Mittermeir (ed.), Informatics education – The bridge between using and understanding computers. ISSEP 2006. Lecture Notes in Computer Science (vol. 4226, pp. 159-168). Springer-Verlag. https://doi.org/10.1007/11915355_15
Futschek, G., y Moschitz, J. (2010). Developing algorithmic thinking by inventing and playing algorithms. En Proceedings of the 2010 Constructionist Approaches to Creative Learning, Thinking and Education: Lessons for the 21st Century (Constructionism 2010) (pp. 1-10). http://publik.tuwien.ac.at/files/PubDat_187461.pdf
Gallardo Romero, J., y González, J. L. (2007). Una aproximación operativa al diagnóstico y la evaluación de la comprensión del conocimiento matemático. PNA. Revista de Investigación en Didáctica de la Matemática, 1(1). http://revistaseug.ugr.es/index.php/pna/article/view/6217
Gayo Avello, D., Cernuda del Río, A., Cueva Lovelle, J. M., Díaz Fondón, M. Á., García Fuente, M. del P. A., y Redondo López, J. M. (2003). Reflexiones y experiencias sobre la enseñanza de POO como único paradigma. En IX Jornadas sobre la Enseñanza Universitaria de la Informática (JENUI’2003). http://hdl.handle.net/10651/30804
Grover, S., y Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051
Grover, S., y Pea, R. (2018). Computational thinking: A competency whose time has come. En S. Sentance, E. Barendsen y C. Schulte (eds.), Computer science education: Perspectives on teaching and learning in school. Bloomsbury Publishing.
Grozdev, S., y Terzieva, T. (2011). Research of the concept of algorithmic thinking in teaching computer science. En The International Scientific-Practical Conference “Informatization of Education–2011” (pp. 112-119).
Grozdev, S., y Terzieva, T. (2015). A didactic model for developmental training in computer science. Journal of Modern Education Review, 5(5), 470-480. https://doi.org/10.15341/jmer(2155-7993)/05.05.2015/005
Guzdial, M., y Soloway, E. (2002). Teaching the Nintendo generation to program. Communications of the ACM, 45(4), 17-21. https://doi.org/10.1145/505248.505261
Hidayat, T., Susilaningsih, E., y Kurniawan, C. (2018). The effectiveness of enrichment test instruments design to measure students’ creative thinking skills and problem solving. Thinking Skills and Creativity, 29, 161-169. https://doi.org/10.1016/j.tsc.2018.02.011
Hoyles, C., y Noss, R. (2015). Revisiting programming to enhance mathematics learning. En Math+Coding Symposium.
Hurlburt, G. F. (2018). Thinking critically about algorithmic thinking. IT Professional, 20(2), 5-10. https://doi.org/10.1109/MITP.2018.021921644
Israel, M., y Lash, T. (2019). From classroom lessons to exploratory learning progressions: Mathematics + computational thinking. Interactive Learning Environments, 28(3), 362-382. https://doi.org/10.1080/10494820.2019.1674879
ISTE, y CSTA [International Society Technology Education, y Computer Science Teachers Association] (2011). Operational Definition of Computational Thinking for K–12 Education. https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
Juškevičienė, A. (2020). Developing algorithmic thinking through computational making. En D. Gintautas, B. Jolita y K. Janusz (eds.), Data science: New issues, challenges and applications (vol. 869, pp. 183-197). Springer. https://doi.org/10.1007/978-3-030-39250-5_10
Kalelioğlu, F., y Gülbahar, Y. (2014). The effect of instructional techniques on critical thinking and critical thinking dispositions in online discussion. Educational Technology & Society, 17(1), 248-258. https://www.jstor.org/stable/jeductechsoci.17.1.248
Kalelioğlu, F. K., Gülbahar, Y., y Kukul, V. (2016). A framework for computational thinking based on a systematic research review. Baltic Journal Modern Computing, 4(3), 583-596. https://www.bjmc.lu.lv/fileadmin/user_upload/lu_portal/projekti/bjmc/Contents/4_3_15_Kalelioglu.pdf
Kátai, Z. (2015). The challenge of promoting algorithmic thinking of both sciences-and humanities-oriented learners. Journal of Computer Assisted Learning, 31(4), 287-299. https://doi.org/10.1111/jcal.12070
Kilhamn, C., y Bråting, K. (2019). Algebraic thinking in the shadow of programming. En U. T. Jankvist, M. van den Heuvel-Panhuizen y M. Veldhuis (eds.), Eleventh Congress of the European Society for Research in Mathematics Education (CERME 11) (vol. TWG03, núm. 7). Freudenthal Group. https://hal.archives-ouvertes.fr/hal-02429028
Kinnunen, P., y Malmi, L. (2006). Why Students drop out CS1 course? En Proceedings of the Second International Workshop on Computing Education Research (pp. 97-108). Association for Computing Machinery. https://doi.org/10.1145/1151588.1151604
Knuth, D. E. (1974). Computer science and its relation to mathematics. The American Mathematical Monthly, 81(4), 323-343. https://doi.org/10.1080/00029890.1974.11993556
Knuth, D. E. (1985). Algorithmic thinking and mathematical thinking. The American Mathematical Monthly, 92(3), 170-181. https://doi.org/10.1080/00029890.1985.11971572
Korkmaz, Ö., Çakir, R., y Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558-569. https://doi.org/10.1016/j.chb.2017.01.005
Kurland, D. M., Clement, C. A., Mawby, R., y Pea, R. D. (1987). Mapping the cognitive demands of learning to program. En D. N. Perkins, J. Lochhead y J. C. Bishop (eds.), Thinking: The Second International Conference. Routledge.
Lockwood, E., DeJarnette, A. F., Asay, A., y Thomas, M. (2016). Algorithmic thinking: An initial characterization of computational thinking in mathematics. En M. B. Wood, E. E. Turner, M. Civil y J. A. Eli (eds.), Proceedings of the 38th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (PMENA 38) (pp. 1588-1595). The University of Arizona. https://files.eric.ed.gov/fulltext/ED583797.pdf
Lovász, L. (1988). Algorithmic mathematics: An old aspect with a new emphasis. En Proceedings of 6th International Congress on Mathematics Education (pp. 67-78). https://web.cs.elte.hu/~%20lovasz/icme.pdf
Martínez-López, L. G., y Gualdrón-Pinto, E. (2018). Fortalecimiento del pensamiento variacional a través de una intervención mediada con TIC en estudiantes de grado noveno. Revista de Investigación, Desarrollo e Innovación, 9(1), 91-102. https://doi.org/10.19053/20278306.v9.n1.2018.8156
McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D., Laxer, C., Thomas, L., Utting, I., y Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of programming skills of first-year CS students. En Working Group Reports from ITiCSE on Innovation and Technology in Computer Science Education (pp. 125-180). https://doi.org/10.1145/572133.572137
Mingus, T. T. Y., y Grassl, R. M. (1998). Algorithmic and recursive thinking: Current beliefs and their implications for the future. En L. J. Morrow y M. J. Kenney (eds.), The teaching and learning of algorithms in school mathematics (pp. 32-43). National Council of Teacher of Mathematics.
Misfeldt, M., y Ejsing-Duun, S. (2015). Learning mathematics through programming: An instrumental approach to potentials and pitfalls. En K. Krainer y N. Vondrová (eds.), Ninth Congress of the European Society for Research in Mathematics Education (CERME 9) (pp. 2524-2530). Charles University in Prague/ERME. https://hal.archives-ouvertes.fr/hal-01289367
Modeste, S. (2012a). Enseigner l’algorithme pour quoi? Quelles nouvelles questions pour les mathématiques? Quels apports pour l’apprentissage de la preuve? [Tesis doctoral]. Universidad de Grenoble. HAL Theses. Archivo tel-00783294. https://tel.archives-ouvertes.fr/tel-00783294
Modeste, S. (2012b). La pensée algorithmique: Apports d’un point de vue extérieur aux mathématiques. En J.-L. Dorier y S. Gousseau Coutat (eds.), Enseignement des Mathématiques et Contrat Social: Enjeux et Défis pour le 21e Siècle – Actes du Colloque Espace Mathématique Francophone 2012 (pp. 467-479). https://www.emf.unige.ch/files/6514/5320/2307/EMF2012GT3MODESTE.pdf
Modeste, S. (2016). Impact of informatics on mathematics and its teaching. En F. Gadducci y M. Tavosanis (eds.), History and philosophy of computing (pp. 243-255). Springer. https://doi.org/10.1007/978-3-319-47286-7_17
NRC [National Research Council] (1989). Everybody counts: A report to the nation on the future of mathematics education. National Academies Press.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books. https://dl.acm.org/doi/pdf/10.5555/1095592
Pyzara, A. (2012). Algorithmisation in teaching mathematics. Didactica Mathematicae, 34, 51-68. https://doi.org/10.14708/dm.v34i0.417
Ramadhan, H. A. (2000). Programming by discovery. Journal of Computer Assisted Learning, 16(1), 83-93. https://doi.org/10.1046/j.1365-2729.2000.00118.x
Rasmussen, C., Zandieh, M., King, K., y Teppo, A. (2005). Advancing mathematical activity: A practice-oriented view of advanced mathematical thinking. Mathematical Thinking and Learning, 7(1), 51-73. https://doi.org/10.1207/s15327833mtl0701_4
Ruiz Ledesma, E. F., y Valdemoros Álvarez, M. E. (2004). Connections between qualitative and quantitative thinking about proportion: The case of Paulina. En M. J. Hoines y A. B. Fuglestad (eds.), The 28th International Conference of the International Group for the Psychology of Mathematics Education. International Group for the Psychology of Mathematics Education. https://eric.ed.gov/?id=ED489542
Sadykova, O. V., e Il’bahtin, G. G. (2019). The definition of algorithmic thinking. En Proceedings of the International Session on Factors of Regional Extensive Development (FRED 2019) (pp. 419-422). Atlantis Press. https://doi.org/10.2991/fred-19.2020.85
Sadykova, O. V., y Usolzev, A. (2018). On the concept of algorithmic thinking. SHS Web Conferences – International Conference on Advanced Studies in Social Sciences and Humanities in the Post-Soviet Era (ICPSE 2018), 55, 03016. https://doi.org/10.1051/shsconf/20185503016
Schoenfeld, A. H. (2013). Reflections on problem solving theory and practice. The Mathematics Enthusiast, 10(1), 9-34. https://doi.org/10.54870/1551-3440.1258
Selby, C. C., y Woollard, J. (2013). Computational thinking: The developing definition. En 18th Annual Conference on Innovation and Technology in Computer Science Education. https://eprints.soton.ac.uk/356481/
Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1-36. https://doi.org/10.1007/BF00302715
Shute, V. J., Sun, C., y Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003
Stephens, M., y Kadijevich, D. M. (2020). Computational/algorithmic thinking. En S. Lerman (ed.), Encyclopedia of Mathematics Education (pp. 117-123). Springer. https://doi.org/10.1007/978-3-030-15789-0_100044
Tall, D. (ed.). (2002). Advanced mathematical thinking. Kluwer Academic Publishers.
Tang, X., Yin, Y., Lin, Q., Hadad, R., y Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 1-22. https://doi.org/10.1016/j.compedu.2019.103798
Thom, J. S., y McGarvey, L. M. (2015). The act and artifact of drawing(s): Observing geometric thinking with, in, and through children’s drawings. ZDM, 47(3), 465-481. https://doi.org/10.1007/s11858-015-0697-0
Voogt, J., Fisser, P., Good, J., Mishra, P., y Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715-728. https://doi.org/10.1007/s10639-015-9412-6
Waterman, K., Goldsmith, L., Pasquale, M., Goldenberg, E. P., Malyn-Smith, J., DeMallie, A., y Lee, I. A. (2018). Integrating computational thinking into elementary mathematics and science curriculum materials and instruction. En Pixel (ed.), Conference Proceedings: The Future of Education. https://conference.pixel-online.net/files/foe/ed0008/FP/4648-ICL3076-FP-FOE8.pdf
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., y Wilensky, U. (2016). Defining Computational thinking for Mathematics and Science classrooms. Journal of Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1881), 3717-3725. https://doi.org/10.1098/rsta.2008.0118
Wing, J. M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7-14. https://doi.org/10.17471/2499-4324/922
Ziatdinov, R., y Musa, S. (2012). Rapid mental computation system as a tool for algorithmic thinking of elementary school students development. European Researcher, 25(7), 1105-1110. http://www.erjournal.ru/pdf.html?n=1342467174.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Eduardo Adam Navas-López
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.