Design and experimentation of a modeling sequence to reveal function ideas
DOI:
https://doi.org/10.33010/ie_rie_rediech.v15i0.1973Keywords:
Modeling activities, teaching experiments, functionsAbstract
The design and experimentation of a modeling sequence are presented to reveal ideas and relationships that arise from students when representing the development of singing talent in a group of people over a period of time. The experimentation was carried out with 37 students (18 years old) in a leveling course previous to entry into a degree in Mathematics, following the design-based research methodology, completing a prospective analysis, classroom experimentation, and redesign assessment cycle. Emerging categories were identified from an inductive analysis to classify the students’ representation models: linear, piecewise linear, smooth, discrete, and alternative. The results show that the students used both their prior knowledge and the insights gained during team interactions to represent the characters’ stories and illustrate the development of talent over a period of time. Additionally, it was notorious that to depict crucial moments, the students explored the characters’ behavior around these.
References
Bakker, A., y van Eerde, D. (2015). An introduction to design-based research with an example from statistics education. En A. Bikner, C. Knipping y N. Presmeg (eds.), Approaches to qualitative research in Mathematics education (pp. 429-466). Springer. https://dx.doi.org/10.1007/978-94-017-9181-6_16
Borba, M., Villarreal, M., y da Silva (2016). Modeling using data available on the internet. En C. R. Hirsch y A. R. McDuffie (eds.), Annual perspectives in Mathematics education 2016: Mathematical modeling and modeling Mathematics. National Council of Teachers of Mathematics.
Camacho, A., Valenzuela, V., y Caldera, M. I. (2017). Modelización de una actividad de la física para mejorar la enseñanza del concepto de función. IE Revista de Investigación Educativa de la REDIECH, 8(15), 57-67.
Carreira, S., y Blum, W. (2021a). Modelação matemática no ensino e aprendizagem da matemática: Parte 1. Quadrante, 30(1).
Carreira, S., y Blum, W. (2021b). Modelação matemática no ensino e aprendizagem da matemática: Parte 2. Quadrante, 30(2).
Cobb, P., y Gravemeijer, K. (2008). Experimenting to support and understand learning processes. En A. E. Kelly, R. A. Lesh y J. Y. Baek (eds.), Handbook of design research methods in education: Innovations in science (pp. 68-95). Routledge.
Christensen, K., y West, R. E. (2018). The development of design-based research. En R. West (ed.), Foundations of learning and instructional design technology. Pressbooks. https://pressbooks.pub/lidtfoundations/chapter/design-based-research/
Doerr, H. M. (2016). Designing sequences of model development tasks. En C. R. Hirsch y A. R. McDuffie (eds.), Annual perspectives in Mathematics education 2016: Mathematical modeling and modeling Mathematics (pp. 197-201). National Council of Teachers of Mathematics.
González de Garay, B. (2011). Glee: el éxito de la diferencia. Sesión no Numerada. Revista de Letras y Ficción Audiovisual, (1), 47-59. https://dialnet.unirioja.es/servlet/articulo?codigo=3658634
Harel, G. (2013). Intellectual need. En Leatham, K. (ed.), Vital directions for Mathematics education research (pp. 119-151). Springer. https://doi.org/10.1007/978-1-4614-6977-3_6
Hirsch, C. R., y McDuffie, A. R. (eds.) (2016). Annual perspectives in Mathematics education 2016: Mathematical modeling and modeling Mathematics. National Council of Teachers of Mathematics.
Lakoff, G., y Nuñez, R. (2000). Where Mathematics comes from: how the embodied mind brings Mathematics into being. Basic Books.
Lesh, R., y Doerr, H. M. (2003). Foundations of a models and modeling perspective on Mathematics teaching, learning, and problem solving. En R. Lesh y H. Doerr (eds), Beyond Constructivism. Models and modeling perspectives on Mathematics problem solving, learning, and teaching (pp. 3-34). Lawrence Erlbaum Associates.
Lesh, R., Hoover, M., Hole, B., Kelly, A., y Post, T. (2000). Principles for developing thought revealing activities for students and teachers. En A. Kelly y R. Lesh (eds.), Research design in Mathematics and science education (pp. 591-646). Lawrence Erlbaum Associates.
Leung, F. K. S., Stillman, G. A., Kaiser, G., y Wong, K. L. (eds.) (2021). Mathematical modelling education in East and West. Springer. https://doi.org/10.1007/978-3-030-66996-6
Makonye, J. P. (2014). Teaching functions using a realistic Mathematics education approach: A theoretical perspective. International Journal of Educational Sciences, 07(03), 653-662.
Montero, L. E., Vargas, V., y Rodríguez, I. I. (2020). Sistemas conceptuales al implementar actividades provocadoras de modelos. En Mathematics education across cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1653-1661). https://doi.org/10.51272/pmena.42.2020-261
Moreno, S., y Alvarado, A. (2021). La modelización como vehículo para el desarrollo del razonamiento covariacional en educación secundaria. Quadrante, 30(2), 147-178. https://doi.org/10.48489/quadrante.23687
Núñez, R. (2020). The cognitive science of Mathematics: Why is it relevant for Mathematics education? En R. Lesh, E. Hamilton y J. Kaput (eds.), Foundations for the future in Mathematics education (pp. 127-154). Routledge. https://doi.org/10.4324/9781003064527-7
Pérez-Oxté, I., y Cordero, F. (2022). Modelling and anticipation of graphical behaviors in industrial chemical engineering: The role of transversality of knowledge in learning Mathematics. En M. Rosa, F. Cordero, D. C. Orey y P. Carranza (eds.), Mathematical modelling programs in Latin America (pp. 269-290). Springer. https://doi.org/10.1007/978-3-031-04271-3_13
Priestley, W. M. (1979). Calculus: An historical approach. Springer-Verlag.
Rosa, M., Cordero, F., Orey, D. C., y Carranza, P. (eds.) (2022). Mathematical modelling programs in Latin America. Springer. https://doi.org/10.1007/978-3-031-04271-3
Suárez, L., y Cordero, F. (2008). Elementos teóricos para estudiar el uso de las gráficas en la modelación del cambio y de la variación en un ambiente tecnológico. Revista Electrónica de Investigación en Educación en Ciencias, 3(1), 51-58. https://doi.org/10.54343/reiec.v3i1.336
Sun, J. M., Wickstrom, M. H., y English, L. D. (eds.) (2021). Exploring mathematical modeling with young learners. Springer. https://doi.org/10.1007/s10649-021-10091-8
Toro, J., Villa, J., y Téllez, L. (2018). La modelación en el aula como un ambiente de experimentación-con-graficación-y-tecnología. Un estudio con funciones trigonométricas. Revista Latinoamericana de Etnomatemática, 11(1), 87-115. https://www.revista.etnomatematica.org/index.php/RevLatEm/article/view/506
Trigueros, M. (2023). Uso de la modelación en la enseñanza de las ecuaciones diferenciales. Congreso de la Sociedad Mexicana de Investigación en Matemática Educativa.
Tuyub, I., y Buendía, G. (2017). Gráficas lineales: un proceso de significación a partir de su uso en ingeniería. IE Revista de Investigación Educativa de la REDIECH, 8(15), 11-28. https://doi.org/10.33010/ie_rie_rediech.v8i15.44
Vargas, V., Reyes, A., y Escalante, C. (2016). Ciclos de entendimiento de los conceptos de función y variación. Educación Matemática, 28(2), 59-83. https://doi.org/10.24844/em2802.03
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Alejandra Soria Pérez, Angelina Alvarado Monroy, Yaziel Pacheco Juárez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.