Processes of covariational reasoning during the cognitive integration of mathematics and physics concepts in the interpretation of hydraulic flow

Authors

DOI:

https://doi.org/10.33010/ie_rie_rediech.v14i0.1766

Keywords:

Dynamic activities, filling of containers, integration of mental spaces

Abstract

The objective of this study was to analyze, through the theoretical approach of cognitive integration, the process of covariational reasoning on a group of students when they interpret the concept of hydraulic flow. Five activities were designed and applied in virtual mode, two of which that included the use of dynamic simulators and digital workbooks are reported in this work. The answers, graphics and comments of the students were analyzed with theoretical elements of cognitive integration, of the variational and covariational reasoning, and of hydraulic flow. The way in which students make sense of their mathematical ideas was identified when they analyze the physical phenomenon of filling one cylinder; to observe how they mobilize their variational and covariational reasoning to support their understanding of the variables related with hydraulic flow and change in height and volume variables of the liquid. The analysis of the evidence allowed to know about the processes of cognitive integration between elements of mathematics and physics, and to recognize behaviors related with different levels of variational or covariational reasoning exhibited by the students.

Author Biographies

Alfonso Castañeda Ovalle, Colegio de Bachilleres, Plantel 1 El Rosario, Ciudad de México

Es Maestro en Docencia Científica y Tecnológica por el IPN y cuenta con especialidad en competencias docentes por la Universidad Pedagógica Nacional en México. Participo como coautor del libro La diversidad de actividades en el proceso de enseñanza aprendizaje del docente en línea, con el capítulo “Actividades interactivas ¿indispensables?” (2019). Actualmente es doctorante en Matemática Educativa en el CICATA-Legaria del IPN-México.

Martha Leticia García Rodríguez, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, México

Es Doctora en Matemática Educativa y tiene el reconocimiento del Sistema Nacional de Investigadores, Nivel 1. Entre sus publicaciones recientes se encuentra el capítulo de libro “Mathematical competencies framework meets problem-solving eesearch in Mathematics education” (2023). Es miembro del Consejo Mexicano de Investigación Educativa y de la Sociedad Mexicana de Investigación y Divulgación de la Educación Matemática.

References

Bing, T. J., y Redish, E. F. (2007). The cognitive blending of mathematics and physics knowledge. AIP Conference Proceedings, 883(1), 26-29. https://doi.org/10.1063/1.2508683

Briceño, V. (2018). Hidrodinámica. https://www.euston96.com/hidrodinamica/

Bollen, L., Van Kampen, P., Baily, C., y De Cock, M. (2016). Qualitative investigation into students’ use of divergence and curl in electromagnetism. Physical Review Physics Education Research, 12(2). https://doi.org/10.1103/PhysRevPhysEducRes.12.020134

Bou, F., Schorlemmer, M., Corneli, J., Gómez-Ramírez, D. J., Maclean, E., Smaill, A., y Pease, A. (2015). The role of blending in mathematical invention. En Proceedings of the Sixth International Conference on Computational Creativity. https://www.researchgate.net/publication/344271895_The_role_of_blending_in_mathematical_invention

Byerley, C., Yoon, H., y Thompson, P. W. (2016). Limitations of a “chunky” meaning for slope. En Proceedings of the 19th Annual Conference on Research in Undergraduate Mathematics Education (pp. 596-604). https://www.researchgate.net/publication/328685839_Limitations_of_a_Chunky_meaning_for_slope/citations

Carlson, M. (1998). A cross-sectional investigation of the development of the function concept. En A. H. Schoenfeld, J. Kaput, E. Dubinsky y T. Dick (eds.), Research in collegiate Mathematics education. III. CBMS issues in Mathematics education (vol. 7, pp. 114-162). Mathematical Association of America.

Carlson, M., Jacobs, S., Coe, E., Larsen, S., y Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958

Castillo-Garsow, C. (2010). Teaching the Verhulst model: A teaching experiment in covariational reasoning and exponential growth [Tesis de Doctorado]. Arizona State University. http://yeolcoatl.net/research/20100722b-Dissertation-cwcg-absolute_final-email_size.pdf

Confrey, J. (1988). Their role in understanding exponential functions. Multiplication and splitting. Conferencia presentada en la Annual Meeting of the North American Chapter for the International Group for the Psychology of Mathematics Education, Dekalb, Illinois. https://doi.org/10.2307/749228

Cruz, C. (2018). Llenado cilindro (versión s.n.). GeoGebra. https://www.geogebra.org/classic/ytppctfw

Fauconnier, G., y Turner, M. (2003). Conceptual blending, form and meaning. Recherches en Communication, 19, 57-86. https://doi.org/10.14428/rec.v19i19.48413

Flores, E. R. (2018). Volumen de un cilindro horizontal (versión s.n.). GeoGebra. https://www.geogebra.org/classic/vhrn9ekc

Gerson, H., y Walter, J. (2008). How blending illuminate understandings of calculus, in electronic. En Proceedings for the Eleventh Special Interest Group of the Mathematical Association of America on Research in Undergraduate Mathematics. http://sigmaa.maa.org/rume/crume2008/Proceedings/Gerson%20LONG.pdf

Hu, D., y Rebello, N. S. (2013). Using conceptual blending to describe how students use mathematical integrals in physics. Physical Review Special Topics-Physics Education Research, 9(2), 020118. https://doi.org/10.1103/PhysRevSTPER.9.02011

Huynh, T., y Sayre, E. C. (2019). Blending of conceptual physics and mathematical signs. arXiv, 1909.11618v1. https://doi.org/10.48550/arXiv.1909.11618

Johnson, H. L. (2013). Designing covariation tasks to support students’ reasoning about quantities involved in rate of change. En C. Margolinas (ed.), Task design in Mathematics education. Proceedings of ICMI Study, 22(1), 213-222. Oxford, UK. https://www.researchgate.net/publication/270883226_Designing_covariation_tasks_to_support_students’_reasoning_about_quantities_involved_in_rate_of_change

Kurzer, M. (2018). The contrast of covariational reasoning and other problem-solving methods of a calculus student [Tesis de Licenciatura]. Portland State University. University Honors Theses. Paper 594. https://doi.org/10.15760/honors.603

Mendoza, R. (2006). Investigación cualitativa y cuantitativa-Diferencias y limitaciones. Monografías. https://www.prospera.gob.mx/Portal/work/sites/Web/resources/ArchivoContent/1351/Investigacion cualitativa y cuantitativa.pdf

Nguyen, D. H., y Rebello, N. S. (2011). Students’ difficulties with integration in electricity. Physical Review Special Topics-Physics Education Research, 7(1), 010113. https://doi.org/10.1103/PhysRevSTPER.7.010113

Paoletti, T., y Moore, K. C. (2018). A covariational understanding of function: Putting a horse before the cart. For the Learning of Mathematics, 38(3), 37-43. https://digitalcommons.montclair.edu/mathsci-facpubs/26/

Saldanha, L., y Thompson, P. W. (1998). Re-thinking covariation from a quantitative perspective: Simultaneous continuous variation. Proceedings of the Annual Meeting of the International Group for the Psychology of Mathematics Education, (1), 298-304. https://www.researchgate.net/publication/264119300_Re-thinking_co-variation_from_a_quantitative_perspective_Simultaneous_continuous_variation

Schermerhorn, B. P. (2018). Investigating student understanding of vector calculus in upper-division electricity and magnetism: Construction and determination of differential element in non-Cartesian coordinate systems. The University of Maine. https://core.ac.uk/download/pdf/217135806.pdf

Schermerhorn, B. P., y Thompson, J. R. (2019). Physics students' construction of differential length vectors in an unconventional spherical coordinate system. Physical Review Physics Education Research, 15(1), 010111.

Sherin, B. L. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479-541. https://doi.org/10.1207/S1532690XCI1904_3

Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematic, 26, 229-274. https://doi.org/10.1007/BF01273664

Thompson, P. W. (1998). Quantitative concepts as a foundation for algebra. En Proceedings of the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education Vol. 1. http://tpc2.net/IME/1994Thompson.pdf

Thompson, P. W., y Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. En Compendium for research in mathematics education (pp. 421-456). https://www.researchgate.net/publication/302581485_Variation_covariation_and_functions_Foundational_ways_of_thinking_mathematically

Uhden, O., Karam, R., Pietrocola, M., y Pospiech, G. (2012). Modelling mathematical reasoning in Physics education. Sci & Educ, 21(4), 485-506. https://doi.org/10.1007/s11191-011-9396-6

Van den Eynde, S., Schermerhorn, B. P., Deprez, J., Goedhart, M., Thompson, J. R., y De Cock, M. (2020). Dynamic conceptual blending analysis to model student reasoning processes while integrating mathematics and physics: A case study in the context of the heat equation. Physical Review Physics Education Research, 16(1). https://doi.org/10.1103/PhysRevPhysEducRes.16.010114

Weber, E., y Thompson, P. W. (2014). Students’ images of two-variable functions and their graphs. Educ Stud Math, 87, 67-85. https://doi.org/10.1007/s10649-014-9548-0

Published

2023-06-21

How to Cite

Castañeda Ovalle, A., & García Rodríguez, M. L. (2023). Processes of covariational reasoning during the cognitive integration of mathematics and physics concepts in the interpretation of hydraulic flow. IE Revista De Investigación Educativa De La REDIECH, 14, e1766. https://doi.org/10.33010/ie_rie_rediech.v14i0.1766