Didactic strategies and technology used in teaching science. A systematic review
DOI:
https://doi.org/10.33010/ie_rie_rediech.v13i0.1396Keywords:
Science education, educational strategies, school laboratories, educational technologyAbstract
This article shows the results of a systematic review of the literature on teaching strategies and experimentation experiences used in science teaching to analyze the contribution of the use of modern scientific concepts, and the development of skills in science and technology, showing as well the integration and solution of problems and laboratory practices that facilitate dialogue and the presentation of one’s ideas, in addition to obtaining information on the desirable characteristics that technological tools or devices applied to education that favor the development of scientific skills in students should consider. The conformation of the study corpus was carried out using logical Boolean operators in the Scopus and Dialnet databases. The grouping-analysis criteria were teaching strategies and school laboratory or experimentation experiences. The results show that the didactic strategies used do contribute to the development of scientific skills and basic concepts in science. School experimentation activities based or not on technology such as virtual, remote, or electronic laboratories facilitate the experience of scientific inquiry at school, having problem-solving as an area of opportunity.
References
Abdurrahman, Ariyani, F., Achmad, A., y Nurulsari, N. (2019). Designing an inquiry-based STEM learning strategy as a powerful alternative solution to enhance students’ 21st-century skills: A preliminary research. Journal of Physics: Conference Series, 1155, 12087. https://doi.org/10.1088/1742-6596/1155/1/012087
Achuthan, K., y Murali, S. S. (2017). Virtual lab: An adequate multi-modality learning channel for enhancing students’ perception in chemistry. Cybernetics and Mathematics Applications in Intelligent Systems, 419-433. https://doi.org/10.1007/978-3-319-57264-2
Akkerman, S. F., y Bakker, A. (2011). Boundary crossing and boundary objects. Review of Educational Research, 81(2), 132-169. https://doi.org/10.3102/0034654311404435
Arabacioglu, S., y Unver, A. O. (2016). Supporting inquiry based with mobile learning to enhance students’ process skills in science education. Journal of Baltic Science Education, 15(2), 216-231.
Ariesta, F. W., Suwarno, y Rombot, O. (2019). Enhancing science learning outcomes through Moodle-based e-learning in elementary schools. International Journal of Scientific and Technology Research, 8(10), 2183-2187.
Boyle, T. J., Sears, J. M., Hernandez-Sanchez, B. A., Casillas, M. R., y Nguyen, T. H. (2017). Chemistry science investigation: Dognapping Workshop, an outreach program designed to introduce students to science through a hands-on mystery. Journal of Chemical Education, 94(10), 1425-1434. https://doi.org/10.1021/acs.jchemed.7b00114
Braun, M., Kirkup, L., y Chadwick, S. (2018). The impact of inquiry orientation and other elements of cultural framework on student engagement in first year laboratory programs. International Journal of Innovation in Science and Mathematics Education, 26(4), 30-48. https://openjournals.library.sydney.edu.au/index.php/CAL/article/view/12508
Caulfield, T. (2020). Pseudoscience and COVID-19 – we’ve had enough already. Nature. https://doi.org/10.1038/d41586-020-01266-z
Chamrat, S. (2019). Teachers as makers: The key provision of teacher preparations for STEM education. Journal of Physics: Conference Series, 1340, 12085. https://doi.org/10.1088/1742-6596/1340/1/012085
Chang, R., y Chung, L. (2018). Integrating augmented reality technology into subject teaching: The implementation of an elementary Science curriculum. En Y. N. Yen y J. C. Hung (eds.), Frontier computing. Theory, technologies and applications FC 2016. Lecture notes in electrical engineering (vol. 422, pp. 187-195). Springer. https://doi.org/10.1007/978-981-10-3187-8_20
Cheng, X., Guo, Y., y Li, Y. (2017). Empirical study on Google Earth (GE)-Integrated science lessons: Cases from two Chinese elementary schools. En S. K. S. Cheung, K. Lam-for, W. W. K. Ma, L. Lap-Kei, y H. Yang (eds.), Blended learning. New challenges and innovative practices (vol. 10309, pp. 273-283). https://doi.org/10.1007/978-3-319-59360-9_24
Cvjetkovic, V. M., y Stankovic, U. (2017). Arduino based Physics and Engineering remote laboratory. International Journal of Online Engineering (iJOE), 13(01), 87. https://doi.org/10.3991/ijoe.v13i01.6375
Díaz-Barriga, F. (2006). Enseñanza situada: vínculo entre la escuela y la vida. McGraw-Hill Interamericana.
Díaz, F., y Hernández, G. (2002). Estrategias docentes para un aprendizaje significativo (2a ed.).
Diwakar, S., Kumar, D., Radhamani, R., Sasidharakurup, H., Nizar, N., Achuthan, K., Nedungadi, P., Raman, R., y Nair, B. (2016). Complementing education via virtual labs: Implementation and deployment of remote laboratories and usage analysis in South Indian villages. International Journal of Online and Biomedical Engineering, 12(3), 8-15. https://doi.org/10.3991/ijoe.v12i03.5391
Dwikoranto, W., Surasmi, A., Suparto, A., Tresnaningsih, S., Sambada, D., Setyowati, T., Faqih, A., y Setiani, R. (2018). Designing laboratory activities in elementary school oriented to scientific approach for teachers SD-Kreatif Bojonegoro. Journal of Physics: Conference Series, 997(1), 012041. https://doi.org/10.1088/1742-6596/997/1/012041
Fadel, C. (2008). 21st century skills: How can you prepare students for the new prepare global economy? OECD/CERI International Conference, Learning in the 21st Century: Research, Innovation and Policy. https://www.oecd.org/site/educeri21st/40756908.pdf
Galán, V. (2017). Towards the open experimentation with interactive laboratories (Tesis de doctorado, Universidad Nacional de Educación a Distancia). Repositorio Universitario. http://e-spacio.uned.es/fez/eserv/tesisuned:ED-Pg-TecInd-Pplaza/PLAZA_MERINO__Pedro_Tesis.pdf
Garcia, C. A., Caiza, G., Naranjo, J. E., Ortiz, A., y Garcia, M. V. (2019). An approach of training virtual environment for teaching electro-pneumatic systems. IFAC-PapersOnLine, 52(9), 278-284. https://doi.org/10.1016/j.ifacol.2019.08.221
Greca, I. M., Meneses Villagrá, J. A., y Ojeda, M. D. (2017). La formación en ciencias de los estudiantes del grado en maestro de Educación Primaria. Revista Electrónica de Enseñanza de las Ciencias, 16(2), 231-256. http://reec.uvigo.es/volumenes/volumen16/REEC_16_2_4_ex1068.pdf
Gudiño Paredes, S. (2018). Innovating science teaching with a transformative learning model. Journal of Education for Teaching, 44(1), 107-111. https://doi.org/10.1080/02607476.2018.1422619
Guevara, R. (2016). El estado del arte en la investigación: ¿análisis de los conocimientos acumulados o indagación por nuevos sentidos? Revista Folios, (44), 165-179. http://www.redalyc.org/articulo.oa?id=345945922011
Hammang, C., Gough, P., Liu, W., Jiang, E., Ross, P., Cook, J., y Poronnik, P. (2018). Life sciences in virtual reality: First-year students learning as creators. SIGGRAPH Asia 2018 Posters, 1-2. Association for Computing Machinery. https://doi.org/10.1145/3283289.3283328
Hapsari, A. S., Hanif, M., Gunarhadi, y Roemintoyo. (2019). Motion graphic animation videos to improve the learning outcomes of elementary school students. European Journal of Educational Research, 8(4), 1245-1255. https://doi.org/10.12973/eu-jer.8.4.1245
Hendawati, Y., Pratomo, S., Suhaedah, S., Lestari, N. A., Ridwan, T., y Majid, N. W. A. (2019). Contextual teaching and learning of Physics at elementary school. Journal of Physics: Conference Series, 1318(1). https://doi.org/10.1088/1742-6596/1318/1/012130
INEE [Instituto Nacional para la Evaluación de la Educación] (2017). Infraestructura escolar en las primarias y secundarias de México. INEE. https://www.inee.edu.mx/wp-content/uploads/2019/01/infarestructuracompletoa.pdf
Irwansyah, F. S., Yusuf, Y. M., Sugilar, H., Nasrudin, D., Ramdhani, M. A., y Salamah, U. (2019). Implementation of fun science learning to increase elementary school students’ skill in science and technology. Journal of Physics: Conference Series, 1318, 012063. https://doi.org/10.1088/1742-6596/1318/1/012063
Irwanto, Saputro, A. D., Rohaeti, E., y Prodjosantoso, A. K. (2019). Using inquiry-based laboratory instruction to improve critical thinking and scientific process skills among preservice elementary teachers. Eurasian Journal of Educational Research, 80, 151-170. https://doi.org/10.14689/ejer.2019.80.8
Jampel, I. N., Fahrurrozi, Artawan, G., Widiana, I. W., Parmiti, D. P., y Hellman, J. (2018). Studying natural science in elementary school using nos-oriented cooperative learning model with the NHT type. Jurnal Pendidikan IPA Indonesia, 7(2), 138-146. https://doi.org/10.15294/jpii.v7i2.9863
Julià, C., y Antolí, J. Ò. (2019). Impact of implementing a long-term STEM-based active learning course on students’ motivation. International Journal of Technology and Design Education, 29(2), 303-327. https://doi.org/10.1007/s10798-018-9441-8
Kasinathan, V., Mustapha, A., Hasibuan, M. A., y Abidin, A. Z. Z. (2018). First discovery: Augmented reality for learning Solar systems. International Journal of Integrated Engineering, 10(6), 149-154. https://doi.org/10.30880/ijie.2018.10.06.021
Kirikkaya, E. B., y Basaran, B. (2019). Investigation of the effect of the integration of Arduino to electrical experiments on students’ attitudes towards technology and ICT by the mixed method. European Journal of Educational Research, 8(1), 31-48. https://doi.org/10.12973/eu-jer.8.1.31
Koul, A., y Verma, R. (2018). Science kits as resource: Issues and challenges. Asia-Pacific Forum on Science Learning and Teaching, 19(2), 6. https://eric.ed.gov/?id=EJ1227849
Laherto, A., y Laherto, J. (2018). Video-mediated Physics instruction from preservice teachers to elementary students: Experiences and reflections. Journal of Digital Learning in Teacher Education, 34(2), 103-114. https://doi.org/10.1080/21532974.2017.1416712
Limpraptono, F. Y., y Nurcahyo, E. (2021). The development of electronics telecommunication remote laboratory architecture based on mobile devices. International Journal of Online and Biomedical Engineering, 17(3), 26-36. https://doi.org/10.3991/ijoe.v17i03.20179
Lin, Y. W., y Wang, T. I. (2017). The design of a STEM-oriented project-based course for the higher grades of elementary schools. En Emerging technologies for education. SETE 2017. Lecture notes in computer science (vol. 10676, pp. 137-143). Springer. https://doi.org/10.1007/978-3-319-71084-6_15
Louhab, F. E., Khiat, A., Bahnasse, A., Bensalah, F., Khiat, Y., y Talea, M. (2019). Towards an e-lab solution for network assisted learning. Procedia Computer Science, 155, 386-393. https://doi.org/10.1016/j.procs.2019.08.054
Lu, S. J., Liu, Y. C., Chen, P. J., y Hsieh, M. R. (2018). Evaluation of AR embedded physical puzzle game on students’ learning achievement and motivation on elementary natural science. Interactive Learning Environments, 4820. https://doi.org/10.1080/10494820.2018.1541908
Lustig, F., Brom, P., Kuriscak, P., y Dvorak, J. (2018). “Hands-on-remote” laboratories. En M. E. Auer y R. Langmann (eds.), Smart industry & smart education. REV 2018. Lecture notes in networks and systems (vol. 47, pp. 118-127). Springer. https://doi.org/10.1007/978-3-319-95678-7_13
Maharaj-Sharma, R., Sharma, A. S. A., y Sharma, A. (2017). Using ICT-based instructional technologies to teach science: Perspectives from teachers in Trinidad and Tobago. Australian Journal of Teacher Education, 42(10), 23-35. https://doi.org/10.14221/ajte.2017v42n10.2
Manassero, M. A., Vázquez, Á., y Acevedo, J. A. (2001). La evaluación de las actitudes CTS. http://formacionib.org/noticias/?La-evaluacion-de-las-actitudes-CTS
Matarrita, C. A., y Beatriz Concari, S. (2016). Remote laboratories used in physics teaching: A state of the art. Proceedings of 2016 13th International Conference on Remote Engineering and Virtual Instrumentation, REV 2016 (June 2018), 385-390. https://doi.org/10.1109/REV.2016.7444509
Molina, N. P. (2005). ¿Qué es el estado del arte? Ciencia y Tecnología para la Salud Visual y Ocular, (5), 73. https://doi.org/10.19052/sv.1666
Montes, D., y Pereida, M. A. (2019). Estrategias didácticas digitales. United Academic Journals.
Musili, O. (2015). Effects of laboratory learning environment on students’ learning outcomes in secondary school chemistry. International Journal of Arts and Sciences, 8(2), 507-525. http://www.universitypublications.net/ijas/0802/html/T4N145.xml
Nasrudin, D., Irwansyah, F. S., Sugilar, H., Ramdhani, M. A., y Aulawi, H. (2019). Packaging science and local wisdom in digital devices for primary school students: Challenges and obstacles. Journal of Physics: Conference Series, 1318(1), 012033. https://doi.org/10.1088/1742-6596/1318/1/012033
Nedungadi, P., Prabhakaran, M., y Raman, R. (2017). Benefits of activity based learning pedagogy with online labs (OLabs). 2017 5th IEEE International Conference on MOOCs, Innovation and Technology in Education (MITE), 52-56. https://doi.org/10.1109/MITE.2017.00015
Palacios-Díaz, R. (2017). Aprendizaje de propiedades elementales de la materia: volumen, masa y densidad, en estudiantes de ESO (Tesis de doctorado, Universidad de Sevilla). https://idus.us.es/handle/11441/70860
Peppler, K., Wohlwend, K., Thompson, N., Tan, V., y Thomas, A. M. (2019). Squishing circuits: Circuitry learning with electronics and playdough in early childhood. Journal of Science Education and Technology, 28(2), 118-132. https://doi.org/10.1007/s10956-018-9752-2
Petry, C. A., Pacheco, F. S., Lohmann, D., Correa, G. A., y Moura, P. (2016). Project teaching beyond Physics: Integrating Arduino to the laboratory. Proceedings of 2016 Technologies Applied to Electronics Teaching, TAEE 2016 (June 2016). https://doi.org/10.1109/TAEE.2016.7528376
Polishuk, A., y Verner, I. (2018). An elementary Science class with a robot teacher. En W. Lepuschitz, M. Merdan, G. Koppensteiner, R. Balogh, y D. Obdržálek (eds.), Robotics in Education. RiE 2017. Advances in intelligent systems and computing (vol. 630, pp. 263-273). https://doi.org/10.1007/978-3-319-62875-2_24
Pramono, S. E., Prajanti, S. D. W., y Wibawanto, W. (2019). Virtual laboratory for elementary students. Journal of Physics: Conference Series, 1387, 012113. https://doi.org/10.1088/1742-6596/1387/1/012113
Priest, S. (2013). Critical science literacy: What citizens and journalists need to know to make sense of science. Bulletin of Science, Technology & Society, 33(5-6), 138-145. https://doi.org/10.1177/0270467614529707
Qistina, M., Hermita, N., Alpusari, M., Noviana, E., Antosa, Z., Witri, G., Munjiatun, M, e Indarni, A. (2019). Improving science learning outcomes of elementary students by using interactive multimedia on human order materials. Journal of Physics: Conference Series, 1351, 012075. https://doi.org/10.1088/1742-6596/1351/1/012075
Rivera, S., Banavar, M. K., y Barry, D. (2018). Mobile apps for incorporating science and engineering practices in K-12 STEM labs. 2018 IEEE Frontiers in Education Conference (FIE), 1-5. IEEE. https://doi.org/10.1109/FIE.2018.8659105
Rizman Herga, N., Èagran, B., y Dinevski, D. (2016). Virtual laboratory in the role of dynamic visualisation for better understanding of chemistry in primary school. EURASIA Journal of Mathematics, Science and Technology Education, 12(3), 593-608. https://doi.org/10.12973/eurasia.2016.1224a
Rocha, M., Cardoso, J. P., Rochadel, W., Bento, J., y Schardosim, J. (2016). Remote experimentation in basic education using an architecture with Raspberry Pi. exp.at 2015 - 3rd Experiment International Conference: Online Experimentation, 75-78. https://doi.org/10.1109/EXPAT.2015.7463218
Román, F., Delgado, R., Ubilluz, C., y Bedón, C. (2019). ICT integration in the teaching/learning process of natural sciences for seventh grade elementary students’. Advances in Intelligent Systems and Computing, 918, 814-822. https://doi.org/10.1007/978-3-030-11890-7_76
Saeng-Xuto, V. (2019). Local wisdom related to STEM education. Journal of Physics: Conference Series, 1340(1), 12091. IOP Publishing. https://doi.org/10.1088/1742-6596/1340/1/012091
Santos, R. C. M., y Mackedanz, L. F. (2019). Physics teaching for children: A bibliographic review. Acta Scientiae, 21(3), 213-230. https://doi.org/10.17648/acta.scientiae.v21iss3id4628
Sañudo Guerra, M. I., y Perales Ponce, R. (2014). Aprender ciencia para el bien común. Perfiles Educativos, 36(143), 29-38. http://www.iisue.unam.mx/perfiles/articulo/2014-143-retos-de-la-reforma-de-la-educacion-basica.pdf
Satriani, I., Emilia, E., y Gunawan, H. (2012). Contextual teaching and learning approach to teaching writing. Indonesian Journal of Applied Linguistics, 2(1), 10. https://doi.org/10.17509/ijal.v2i1.70
Schellinger, J., Mendenhall, A., Alemanne, N. D., Southerland, S. A., Sampson, V., Douglas, I., Kazmer, M. M., Marty, P. F. (2017). “Doing science” in elementary school: Using digital technology to foster the development of elementary students’ understandings of scientific inquiry. Eurasia Journal of Mathematics, Science and Technology Education, 13(8), 4635-4649. https://doi.org/10.12973/eurasia.2017.00955a
Schiefer, J., Golle, J., Tibus, M., Trautwein, U., y Oschatz, K. (2017). Elementary school children’s understanding of science: The implementation of an extracurricular science intervention. Contemporary Educational Psychology, 51, 447-463. https://doi.org/10.1016/j.cedpsych.2017.09.011
Selvianiresa, D., y Prabawanto, S. (2017). Contextual teaching and learning approach of Mathematics in primary schools. Journal of Physics: Conference Series, 895(1), 012171. https://doi.org/10.1088/1742-6596/895/1/012171
Silva, J. B. da, Simão, J. P. S., Cristiano, M. A. da S., Nicolete, P. C., Heck, C., y Coelho, K. D. S. (2016). A DC electric panel remote lab. International Journal of Online Engineering (iJOE), 12(04), 30. https://doi.org/10.3991/ijoe.v12i04.5096
So, W. W. M., Zhan, Y., Chow, S. C. F., y Leung, C. F. (2018). Analysis of STEM activities in primary students’ science projects in an informal learning environment. International Journal of Science and Mathematics Education, 16(6), 1003-1023. https://doi.org/10.1007/s10763-017-9828-0
Sun, D., y Looi, C.-K. (2019). Crossing border: Mobile technologies integrating into STEM activity in and out of classroom. Proceedings of the 27th International Conference on Computers in Education, 2, 203-207. https://repository.eduhk.hk/en/publications/crossing-border-mobile-technologies-integrating-into-stem-activit
Syarah, E. S., Yetti, E., Fridani, L., Yufiarti, Hapidin, y Pupala, B. (2019). Electronic comics in elementary school science learning for marine conservation. Jurnal Pendidikan IPA Indonesia, 8(4), 500-511. https://doi.org/10.15294/jpii.v8i4.19377
Tobón, S. (2013). Formación integral y competencias. Pensamiento complejo, currículo, didáctica y evaluación (4a. ed.). ECOE.
Toma, R. B., Greca, I. M., y Meneses-Villagrác, J. Á. (2017). Dificultades de maestros en formación inicial para diseñar unidades didácticas usando la metodología de indagación. Revista Eureka, 14(2), 442-457. https://doi.org/10.25267/rev_eureka_ensen_divulg_cienc.2017.v14.i2.11
Vázquez-Alonso, Á., Acevedo-Díaz, J. A., y Manassero Mas, M. A. (2005). Más allá de la enseñanza de las ciencias para científicos: hacia una educación científica humanística. Revista Electrónica de Enseñanza de las Ciencias, 4(2), 1-30. http://reec.uvigo.es/volumenes/volumen4/ART5_Vol4_N2.pdf
Verner, I. M., Polishuk, A., y Krayner, N. (2016). Science class with RoboThespian: Using a robot teacher to make science fun and engage students. IEEE Robotics & Automation Magazine, 23(2), 74-80. https://doi.org/10.1109/MRA.2016.2515018
Wang, C. (2018). Applying interactive devices to an elementary nature science course. Computer Applications in Engineering Education, 26(3), 531-542. https://doi.org/10.1002/cae.21905
Yuliati, Y., Saputra, D. S., Rachmadtullah, R., Rasmitadila, y Iasha, V. (2019). The application of guided inquiry model helpful Macromedia Flash in increasing understanding in natural science learning for fifth grader of primary school. International Journal of Scientific and Technology Research, 8(10), 2574-2576.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ramón Zárate-Moedano, Sandra Luz Canchola-Magdaleno, Jorge Suarez-Medellín
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.