Procesos de razonamiento covariacional durante la integración cognitiva de conceptos de matemáticas y de física en la interpretación del gasto hidráulico
DOI:
https://doi.org/10.33010/ie_rie_rediech.v14i0.1766Palabras clave:
Actividades dinámicas, llenado de recipientes, integración de espacios mentalesResumen
El objetivo del presente estudio fue analizar, mediante la aproximación teórica de la integración cognitiva, el proceso de razonamiento covariacional de un grupo de estudiantes cuando interpretan el concepto de gasto hidráulico. Se diseñaron cinco actividades, aplicadas en modalidad virtual, de las cuales dos se reportan en este documento, que incluyeron el uso de simuladores dinámicos y cuadernillos digitales de trabajo. Las respuestas, gráficas y comentarios de los estudiantes fueron analizados con elementos teóricos de la integración cognitiva, del razonamiento variacional y covariacional y del gasto hidráulico. Se identificó la forma en que los estudiantes dan sentido a sus ideas matemáticas cuando analizan el fenómeno físico del llenado de cilindro; cómo movilizan su razonamiento variacional y covariacional para apoyar el entendimiento de las variables relacionadas con el gasto hidráulico y el cambio en las variables altura y volumen del líquido. El análisis de las evidencias permitió conocer sobre los procesos de integración cognitiva entre elementos de las matemáticas y la física y reconocer comportamientos relacionados con distintos niveles de razonamiento variacional o covariacional exhibidos por los estudiantes.
Citas
Bing, T. J., y Redish, E. F. (2007). The cognitive blending of mathematics and physics knowledge. AIP Conference Proceedings, 883(1), 26-29. https://doi.org/10.1063/1.2508683
Briceño, V. (2018). Hidrodinámica. https://www.euston96.com/hidrodinamica/
Bollen, L., Van Kampen, P., Baily, C., y De Cock, M. (2016). Qualitative investigation into students’ use of divergence and curl in electromagnetism. Physical Review Physics Education Research, 12(2). https://doi.org/10.1103/PhysRevPhysEducRes.12.020134
Bou, F., Schorlemmer, M., Corneli, J., Gómez-Ramírez, D. J., Maclean, E., Smaill, A., y Pease, A. (2015). The role of blending in mathematical invention. En Proceedings of the Sixth International Conference on Computational Creativity. https://www.researchgate.net/publication/344271895_The_role_of_blending_in_mathematical_invention
Byerley, C., Yoon, H., y Thompson, P. W. (2016). Limitations of a “chunky” meaning for slope. En Proceedings of the 19th Annual Conference on Research in Undergraduate Mathematics Education (pp. 596-604). https://www.researchgate.net/publication/328685839_Limitations_of_a_Chunky_meaning_for_slope/citations
Carlson, M. (1998). A cross-sectional investigation of the development of the function concept. En A. H. Schoenfeld, J. Kaput, E. Dubinsky y T. Dick (eds.), Research in collegiate Mathematics education. III. CBMS issues in Mathematics education (vol. 7, pp. 114-162). Mathematical Association of America.
Carlson, M., Jacobs, S., Coe, E., Larsen, S., y Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958
Castillo-Garsow, C. (2010). Teaching the Verhulst model: A teaching experiment in covariational reasoning and exponential growth [Tesis de Doctorado]. Arizona State University. http://yeolcoatl.net/research/20100722b-Dissertation-cwcg-absolute_final-email_size.pdf
Confrey, J. (1988). Their role in understanding exponential functions. Multiplication and splitting. Conferencia presentada en la Annual Meeting of the North American Chapter for the International Group for the Psychology of Mathematics Education, Dekalb, Illinois. https://doi.org/10.2307/749228
Cruz, C. (2018). Llenado cilindro (versión s.n.). GeoGebra. https://www.geogebra.org/classic/ytppctfw
Fauconnier, G., y Turner, M. (2003). Conceptual blending, form and meaning. Recherches en Communication, 19, 57-86. https://doi.org/10.14428/rec.v19i19.48413
Flores, E. R. (2018). Volumen de un cilindro horizontal (versión s.n.). GeoGebra. https://www.geogebra.org/classic/vhrn9ekc
Gerson, H., y Walter, J. (2008). How blending illuminate understandings of calculus, in electronic. En Proceedings for the Eleventh Special Interest Group of the Mathematical Association of America on Research in Undergraduate Mathematics. http://sigmaa.maa.org/rume/crume2008/Proceedings/Gerson%20LONG.pdf
Hu, D., y Rebello, N. S. (2013). Using conceptual blending to describe how students use mathematical integrals in physics. Physical Review Special Topics-Physics Education Research, 9(2), 020118. https://doi.org/10.1103/PhysRevSTPER.9.02011
Huynh, T., y Sayre, E. C. (2019). Blending of conceptual physics and mathematical signs. arXiv, 1909.11618v1. https://doi.org/10.48550/arXiv.1909.11618
Johnson, H. L. (2013). Designing covariation tasks to support students’ reasoning about quantities involved in rate of change. En C. Margolinas (ed.), Task design in Mathematics education. Proceedings of ICMI Study, 22(1), 213-222. Oxford, UK. https://www.researchgate.net/publication/270883226_Designing_covariation_tasks_to_support_students’_reasoning_about_quantities_involved_in_rate_of_change
Kurzer, M. (2018). The contrast of covariational reasoning and other problem-solving methods of a calculus student [Tesis de Licenciatura]. Portland State University. University Honors Theses. Paper 594. https://doi.org/10.15760/honors.603
Mendoza, R. (2006). Investigación cualitativa y cuantitativa-Diferencias y limitaciones. Monografías. https://www.prospera.gob.mx/Portal/work/sites/Web/resources/ArchivoContent/1351/Investigacion cualitativa y cuantitativa.pdf
Nguyen, D. H., y Rebello, N. S. (2011). Students’ difficulties with integration in electricity. Physical Review Special Topics-Physics Education Research, 7(1), 010113. https://doi.org/10.1103/PhysRevSTPER.7.010113
Paoletti, T., y Moore, K. C. (2018). A covariational understanding of function: Putting a horse before the cart. For the Learning of Mathematics, 38(3), 37-43. https://digitalcommons.montclair.edu/mathsci-facpubs/26/
Saldanha, L., y Thompson, P. W. (1998). Re-thinking covariation from a quantitative perspective: Simultaneous continuous variation. Proceedings of the Annual Meeting of the International Group for the Psychology of Mathematics Education, (1), 298-304. https://www.researchgate.net/publication/264119300_Re-thinking_co-variation_from_a_quantitative_perspective_Simultaneous_continuous_variation
Schermerhorn, B. P. (2018). Investigating student understanding of vector calculus in upper-division electricity and magnetism: Construction and determination of differential element in non-Cartesian coordinate systems. The University of Maine. https://core.ac.uk/download/pdf/217135806.pdf
Schermerhorn, B. P., y Thompson, J. R. (2019). Physics students' construction of differential length vectors in an unconventional spherical coordinate system. Physical Review Physics Education Research, 15(1), 010111.
Sherin, B. L. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479-541. https://doi.org/10.1207/S1532690XCI1904_3
Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematic, 26, 229-274. https://doi.org/10.1007/BF01273664
Thompson, P. W. (1998). Quantitative concepts as a foundation for algebra. En Proceedings of the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education Vol. 1. http://tpc2.net/IME/1994Thompson.pdf
Thompson, P. W., y Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. En Compendium for research in mathematics education (pp. 421-456). https://www.researchgate.net/publication/302581485_Variation_covariation_and_functions_Foundational_ways_of_thinking_mathematically
Uhden, O., Karam, R., Pietrocola, M., y Pospiech, G. (2012). Modelling mathematical reasoning in Physics education. Sci & Educ, 21(4), 485-506. https://doi.org/10.1007/s11191-011-9396-6
Van den Eynde, S., Schermerhorn, B. P., Deprez, J., Goedhart, M., Thompson, J. R., y De Cock, M. (2020). Dynamic conceptual blending analysis to model student reasoning processes while integrating mathematics and physics: A case study in the context of the heat equation. Physical Review Physics Education Research, 16(1). https://doi.org/10.1103/PhysRevPhysEducRes.16.010114
Weber, E., y Thompson, P. W. (2014). Students’ images of two-variable functions and their graphs. Educ Stud Math, 87, 67-85. https://doi.org/10.1007/s10649-014-9548-0
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Alfonso Castañeda Ovalle, Martha Leticia García Rodríguez
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.